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Greedy Algorithms

Study Chapters 5.1-5.2
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Greedy Algorithms

• An iterative algorithm where at each step

– Take what seems to be the best option

• Cons: 

– It may return incorrect results

– It may require more steps than necessary

• Pros:

– it often takes very little time to make a greedy choice

– we consider choices independently

• Did we see any greedy algorithm in previous 
lectures?

Coin change problem
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The chef at “IHOP” is sloppy. 

He makes pancakes of non-uniform sizes, 

and throws them on the plate.

Before the waitress delivers them to your 

table, she rearranges them so that the smaller 

pancakes are stacked on larger ones.

Since she has only one hand to perform this 

culinary rearrangement, she does it with the 

spatula with which she flips the pancakes. 

I was wondering, how many such flips are 

needed for this rearrangement?

Pancake Flipping Problem

How many 

flips?

4

Pancake Flipping Problem: Formulation

• Goal: Given a stack of n pancakes, what is the 
minimum number of flips to rearrange them into 
a perfect (small-to-large ordered) stack?

• Input: Permutation p

• Output: A series of prefix reversals r1, … rt

transforming p into the identity permutation 
such that t is minimum

p   = p 1  p i-1 p i p i+1  p n

r

p   = p i p i-1  p 1 p i+1  p n
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Turning Pancakes into Numbers
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How do we sort 

this stack?

What is fewest 

flips needed?
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“Bring to Top” Method

Flip the biggest to top. 

Flip the whole stack (n), 

to place it on bottom. 

Flip the next largest to top. 

Flip the n-1 pancakes, thus 

placing the second largest 

second from bottom. 

And so on…
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Bring-to-Top Method for n Pancakes

• If (n = 1), the smallest is on top - we are done.

• otherwise: flip pancake n to top and then 
flip it to position n.

• Now use: 

Bring-to-Top Method 
for n-1 Pancakes

Greedy algorithm: 2 flips to put a pancake in its right position.

Total Cost: at most 2(n-1) = 2n –2 flips.
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Good Enough?

The “Biggest-to-top” algorithm did it in 5 flips! The 
predicted “8” flips is an upper-bound for any input.
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• Our algorithm is correct, but is it the best we could do?

• Consider the following:
Our algorithm predicts 2(5-1) = 8 flips,  but…

Does there exist another algorithm that can do it in fewer flips?



9/14/2016

5

9

4 Flips Are Sufficient
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William Gates (yeah, that Microsoft guy)  and Christos Papadimitriou 

showed in the mid-1970s that this problem can be solved by at least 

17/16 n and at most 5/3 (n + 1) prefix reversals (flips) for n pancakes.
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A Serious Scientific Problem …

• Some are obviously similar…

• Some are obviously different…

• Some are close calls…

• The differences that matter are in 
the genes!

• And the gene order is important!

Differences between species?
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Genome Rearrangements

• Humans and mice have 
similar genomes, but their 
genes are ordered 
differently

• ~245 rearrangements

• ~ 300 large synteny blocks
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•What are the similarity blocks and how to find 
them?

•What is the architecture of the ancestral genome?

•What is the evolutionary scenario for transforming 
one genome into the other?

Mouse (X chrom.)

Human (X chrom.)

Genome Rearrangements

Unknown ancestor

~ 75 million years ago
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History of Chromosome X

Rat Consortium, Nature, 2004

Rearrangement 

Events:

•Reversals

•Fusions

•Fissions

•Translocation
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Reversals

• Blocks represent conserved genes.

• Reversals, or inversions, are particularly relevant to 
speciation. Recombinations cannot occur between 
reversed and normally ordered segments. 
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1  2  3 4  5  6  7  8  9  10

http://www.cs.unc.edu/~mcmillan/
http://www.cs.unc.edu/~mcmillan/
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Reversals
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• Blocks represent conserved genes.

• In the course of evolution or in a clinical context, 
blocks 1 … 10 could be reordered 
as 1  2  3  8  7  6  5  4  9  10.
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Reversals and Breakpoints
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1  2  3  8  7  6  5  4  9  10

The inversion introduced two breakpoints
(disruptions in order).



9/14/2016

9

17

Reversals and Gene Orders

• Gene order can be represented by a 
permutation p: 

p   = p 1  p i-1 p i p i+1  p j-1 p j p j+1  p n

p 1  p i-1 p j p j-1  p i+1 p i p j+1  pn

 Reversal r ( i, j ) reverses (flips) the elements 
from i to j in p

r (i,j)

18

Reversals: Example

p = 1 2 3 4 5 6 7 8                 

r (3,5)

1 2 5 4 3 6 7 8

r (5,6)

1 2 5 4 6 3 7 8
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“Reversal Distance” Problem

• Goal: Given two permutations over n elements, find the 
shortest series of reversals that transforms one into 
another

• Input: Permutations p and s

• Output: A series of reversals r1,…rt transforming p into 
s, such that t is minimum

• t - reversal distance between p and s (# of reversals)

• d(p, s) - smallest possible value of t, given p and s
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“Sorting By Reversals” Problem

• Goal: Given a permutation, find a shortest series 
of reversals that transforms it into the identity 
permutation (1 2 … n) 

• Input: Permutation p

• Output: A series of reversals r1, … rt

transforming p into the identity permutation 
such that t is minimum

• t =d(p ) - reversal distance of p

A simplified restatement of the same problem….
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Sorting By Reversals: Example

d(p ) = 3

4  3 2  1  5  6  7  10  9  8

p =  3  4 2  1  5  6  7  10  9  8

4  3  2  1 5  6  7   8   9 10

1  2  3  4 5  6  7   8   9 10
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Sorting by Reversals: 4 flips

Step 0: p 2 4 3 5 8 7 6 1

Step 1: 2 3 4 5 8 7 6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 8 7 6 5 4 3 2 1

Step 4: 1 2 3 4 5 6 7 8

What is the reversal distance for this 
permutation? 
Can it be sorted in 3 flips? 
How can we know?
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Sorting By Reversals: A Greedy Algorithm

• If sorting permutation p = 1 2 3 6 4 5, the first 
three elements are already in order so it does not 
make any sense to break them apart. 

• The length of the already sorted prefix of p is 
denoted prefix(p)

– prefix(p) = 3

• This results in an idea for a greedy algorithm: 
increase prefix(p) at every step
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• Doing so, p can be sorted

1 2 3 6 4 5 

1 2 3 4 6 5

1 2 3 4 5 6

• Number of steps to sort permutation of 
length n is at most (n – 1)

Sort by Reversals: An Example

This reminds me of 

selection sort 
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Greedy Algorithm

SimpleReversalSort(p)
1 for i  1 to n – 1

2 j position of element i in p (i.e., pj = i)
3    if j ≠i

4       p  p r(i, j)

5       output p
6    if p is the identity permutation 
7       return

In Python

26

def SimpleReversalSort(pi):
for i in range(len(pi)):

j = pi.index(min(pi[i:])) 
if (j != i):

pi = pi[:i] + [v for v in reversed(pi[i:j+1])] + pi[j+1:]
print(i, j, pi)

if sorted(pi):
break

return pi

Example Run:
>>> SimpleReversalSort([2, 3, 4, 6, 1, 5])
0 4 [1, 6, 4, 3, 2, 5]
1 4 [1, 2, 3, 4, 6, 5]
4 5 [1, 2, 3, 4, 5, 6]
[1, 2, 3, 4, 5, 6]
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Analyzing SimpleReversalSort

• SimpleReversalSort does not guarantee the 
smallest number of reversals and takes five steps 
on  p = 6 1 2 3 4 5 :

Flip 1: 1 6 2 3 4 5

Flip 2: 1 2 6 3 4 5 

Flip 3: 1 2 3 6 4 5

Flip 4: 1 2 3 4 6 5

Flip 5: 1 2 3 4 5 6
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• But it can be sorted in two flips:

p =  6 1 2 3 4 5

Flip 1:  5 4 3 2 1 6     

Flip 2:  1 2 3 4 5 6

• So, SimpleReversalSort(p) is not optimal

• Optimal algorithms are unknown for many 
problems; approximation algorithms are used

Analyzing SimpleReversalSort
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Approximation Algorithms

• Find approximate solutions rather than optimal 
solutions

• The approximation ratio of an algorithm A on 
input p is:

A(p) / OPT(p)

where 

A(p) - solution produced by algorithm A
OPT(p) - optimal solution of the problem
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Approximation Ratio/Performance Guarantee

• Approximation ratio (performance guarantee) of 
algorithm A: max approximation ratio over all 
inputs of size n

– For a minimizing algorithm A (like ours):

• Approx Ratio = max|p| = n A(p) / OPT(p) ≥ 1.0

– For maximization algorithms:
• Approx Ratio = min|p| = n A(p) / OPT(p) ≤ 1.0
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Approximation Ratio

SimpleReversalSort(p)

1 for i  1 to n – 1

2 j  position of element i in p (i.e., pj = i)

3    if j ≠i

4       p  p r(i, j)

5       output p

6    if p is the identity permutation 

7       return

approximation 

ratio?

Step 0: 6 1 2 3 4 5

Step 1: 1 6 2 3 4 5

Step 2: 1 2 6 3 4 5 

Step 3: 1 2 3 6 4 5

Step 4: 1 2 3 4 6 5

Step 5: 1 2 3 4 5 6

at least 
(n-1)/2

Step 0: 6 1 2 3 4 5

Step 1: 5 4 3 2 1 6

Step 2: 1 2 3 4 5 6
any better 

greedy 
algorithms?


