
9/14/2016

1

1

Greedy Algorithms

Study Chapters 5.1-5.2

2

Greedy Algorithms

• An iterative algorithm where at each step

– Take what seems to be the best option

• Cons:

– It may return incorrect results

– It may require more steps than necessary

• Pros:

– it often takes very little time to make a greedy choice

– we consider choices independently

• Did we see any greedy algorithm in previous
lectures?

Coin change problem

9/14/2016

2

3

The chef at “IHOP” is sloppy.

He makes pancakes of non-uniform sizes,

and throws them on the plate.

Before the waitress delivers them to your

table, she rearranges them so that the smaller

pancakes are stacked on larger ones.

Since she has only one hand to perform this

culinary rearrangement, she does it with the

spatula with which she flips the pancakes.

I was wondering, how many such flips are

needed for this rearrangement?

Pancake Flipping Problem

How many

flips?

4

Pancake Flipping Problem: Formulation

• Goal: Given a stack of n pancakes, what is the
minimum number of flips to rearrange them into
a perfect (small-to-large ordered) stack?

• Input: Permutation p

• Output: A series of prefix reversals r1, … rt

transforming p into the identity permutation
such that t is minimum

p = p 1  p i-1 p i p i+1  p n

r

p = p i p i-1  p 1 p i+1  p n

9/14/2016

3

5

Turning Pancakes into Numbers

5

2

3

4

1

5

2

3

4

1

How do we sort

this stack?

What is fewest

flips needed?

6

“Bring to Top” Method

Flip the biggest to top.

Flip the whole stack (n),

to place it on bottom.

Flip the next largest to top.

Flip the n-1 pancakes, thus

placing the second largest

second from bottom.

And so on…

9/14/2016

4

7

Bring-to-Top Method for n Pancakes

• If (n = 1), the smallest is on top - we are done.

• otherwise: flip pancake n to top and then
flip it to position n.

• Now use:

Bring-to-Top Method
for n-1 Pancakes

Greedy algorithm: 2 flips to put a pancake in its right position.

Total Cost: at most 2(n-1) = 2n –2 flips.

8

Good Enough?

The “Biggest-to-top” algorithm did it in 5 flips! The
predicted “8” flips is an upper-bound for any input.

3

2

1

4

5

5

2

3

4

1

2

3

1

4

5

4

1

3

2

5

1

4

3

2

5

1

2

3

4

5

• Our algorithm is correct, but is it the best we could do?

• Consider the following:
Our algorithm predicts 2(5-1) = 8 flips, but…

Does there exist another algorithm that can do it in fewer flips?

9/14/2016

5

9

4 Flips Are Sufficient

1

2

3

4

5

5

2

3

4

1

4

3

2

1

5

2

3

4

1

5

1

4

3

2

5

William Gates (yeah, that Microsoft guy) and Christos Papadimitriou

showed in the mid-1970s that this problem can be solved by at least

17/16 n and at most 5/3 (n + 1) prefix reversals (flips) for n pancakes.

10

A Serious Scientific Problem …

• Some are obviously similar…

• Some are obviously different…

• Some are close calls…

• The differences that matter are in
the genes!

• And the gene order is important!

Differences between species?

9/14/2016

6

11

Genome Rearrangements

• Humans and mice have
similar genomes, but their
genes are ordered
differently

• ~245 rearrangements

• ~ 300 large synteny blocks

12

•What are the similarity blocks and how to find
them?

•What is the architecture of the ancestral genome?

•What is the evolutionary scenario for transforming
one genome into the other?

Mouse (X chrom.)

Human (X chrom.)

Genome Rearrangements

Unknown ancestor

~ 75 million years ago

9/14/2016

7

13

History of Chromosome X

Rat Consortium, Nature, 2004

Rearrangement

Events:

•Reversals

•Fusions

•Fissions

•Translocation

14

Reversals

• Blocks represent conserved genes.

• Reversals, or inversions, are particularly relevant to
speciation. Recombinations cannot occur between
reversed and normally ordered segments.

1 32

4

10

5
6

8

9

7

1 2 3 4 5 6 7 8 9 10

http://www.cs.unc.edu/~mcmillan/
http://www.cs.unc.edu/~mcmillan/

9/14/2016

8

15

Reversals

1 32

4

10

5
6

8

9

7

1 2 3 8 7 6 5 4 9 10

• Blocks represent conserved genes.

• In the course of evolution or in a clinical context,
blocks 1 … 10 could be reordered
as 1 2 3 8 7 6 5 4 9 10.

16

Reversals and Breakpoints

1 32

4

10

5
6

8

9

7

1 2 3 8 7 6 5 4 9 10

The inversion introduced two breakpoints
(disruptions in order).

9/14/2016

9

17

Reversals and Gene Orders

• Gene order can be represented by a
permutation p:

p = p 1  p i-1 p i p i+1  p j-1 p j p j+1  p n

p 1  p i-1 p j p j-1  p i+1 p i p j+1  pn

 Reversal r (i, j) reverses (flips) the elements
from i to j in p

r (i,j)

18

Reversals: Example

p = 1 2 3 4 5 6 7 8

r (3,5)

1 2 5 4 3 6 7 8

r (5,6)

1 2 5 4 6 3 7 8

9/14/2016

10

19

“Reversal Distance” Problem

• Goal: Given two permutations over n elements, find the
shortest series of reversals that transforms one into
another

• Input: Permutations p and s

• Output: A series of reversals r1,…rt transforming p into
s, such that t is minimum

• t - reversal distance between p and s (# of reversals)

• d(p, s) - smallest possible value of t, given p and s

20

“Sorting By Reversals” Problem

• Goal: Given a permutation, find a shortest series
of reversals that transforms it into the identity
permutation (1 2 … n)

• Input: Permutation p

• Output: A series of reversals r1, … rt

transforming p into the identity permutation
such that t is minimum

• t =d(p) - reversal distance of p

A simplified restatement of the same problem….

9/14/2016

11

21

Sorting By Reversals: Example

d(p) = 3

4 3 2 1 5 6 7 10 9 8

p = 3 4 2 1 5 6 7 10 9 8

4 3 2 1 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

22

Sorting by Reversals: 4 flips

Step 0: p 2 4 3 5 8 7 6 1

Step 1: 2 3 4 5 8 7 6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 8 7 6 5 4 3 2 1

Step 4: 1 2 3 4 5 6 7 8

What is the reversal distance for this
permutation?
Can it be sorted in 3 flips?
How can we know?

9/14/2016

12

23

Sorting By Reversals: A Greedy Algorithm

• If sorting permutation p = 1 2 3 6 4 5, the first
three elements are already in order so it does not
make any sense to break them apart.

• The length of the already sorted prefix of p is
denoted prefix(p)

– prefix(p) = 3

• This results in an idea for a greedy algorithm:
increase prefix(p) at every step

24

• Doing so, p can be sorted

1 2 3 6 4 5

1 2 3 4 6 5

1 2 3 4 5 6

• Number of steps to sort permutation of
length n is at most (n – 1)

Sort by Reversals: An Example

This reminds me of

selection sort

9/14/2016

13

25

Greedy Algorithm

SimpleReversalSort(p)
1 for i  1 to n – 1

2 j position of element i in p (i.e., pj = i)
3 if j ≠i

4 p  p r(i, j)

5 output p
6 if p is the identity permutation
7 return

In Python

26

def SimpleReversalSort(pi):
for i in range(len(pi)):

j = pi.index(min(pi[i:]))
if (j != i):

pi = pi[:i] + [v for v in reversed(pi[i:j+1])] + pi[j+1:]
print(i, j, pi)

if sorted(pi):
break

return pi

Example Run:
>>> SimpleReversalSort([2, 3, 4, 6, 1, 5])
0 4 [1, 6, 4, 3, 2, 5]
1 4 [1, 2, 3, 4, 6, 5]
4 5 [1, 2, 3, 4, 5, 6]
[1, 2, 3, 4, 5, 6]

9/14/2016

14

27

Analyzing SimpleReversalSort

• SimpleReversalSort does not guarantee the
smallest number of reversals and takes five steps
on p = 6 1 2 3 4 5 :

Flip 1: 1 6 2 3 4 5

Flip 2: 1 2 6 3 4 5

Flip 3: 1 2 3 6 4 5

Flip 4: 1 2 3 4 6 5

Flip 5: 1 2 3 4 5 6

28

• But it can be sorted in two flips:

p = 6 1 2 3 4 5

Flip 1: 5 4 3 2 1 6

Flip 2: 1 2 3 4 5 6

• So, SimpleReversalSort(p) is not optimal

• Optimal algorithms are unknown for many
problems; approximation algorithms are used

Analyzing SimpleReversalSort

9/14/2016

15

29

Approximation Algorithms

• Find approximate solutions rather than optimal
solutions

• The approximation ratio of an algorithm A on
input p is:

A(p) / OPT(p)

where

A(p) - solution produced by algorithm A
OPT(p) - optimal solution of the problem

30

Approximation Ratio/Performance Guarantee

• Approximation ratio (performance guarantee) of
algorithm A: max approximation ratio over all
inputs of size n

– For a minimizing algorithm A (like ours):

• Approx Ratio = max|p| = n A(p) / OPT(p) ≥ 1.0

– For maximization algorithms:
• Approx Ratio = min|p| = n A(p) / OPT(p) ≤ 1.0

9/14/2016

16

31

Approximation Ratio

SimpleReversalSort(p)

1 for i  1 to n – 1

2 j  position of element i in p (i.e., pj = i)

3 if j ≠i

4 p  p r(i, j)

5 output p

6 if p is the identity permutation

7 return

approximation

ratio?

Step 0: 6 1 2 3 4 5

Step 1: 1 6 2 3 4 5

Step 2: 1 2 6 3 4 5

Step 3: 1 2 3 6 4 5

Step 4: 1 2 3 4 6 5

Step 5: 1 2 3 4 5 6

at least
(n-1)/2

Step 0: 6 1 2 3 4 5

Step 1: 5 4 3 2 1 6

Step 2: 1 2 3 4 5 6
any better

greedy
algorithms?

