Genome Rearrangements

Study Chapters 5.3-5.5

From Last Time

* We developed a SimpleReversalSort algorithm that sorts

by extending its prefix on every iteration (n-1) steps.

* On 7:612345
Flip1:162345
Flip2:126345
Flip3:123645 @ -°°
Flip4:123465
Flip5:123456

 But it could have been sorted in two flips:

7. 612345
Flipl: 543216
Flip2: 123456

We probably don't want to use
this algorithm fo estimate the
reversal distance between two
genomes

9/19/2016

Approximation Algorithms

* Today’s algorithms find approximate solutions
rather than optimal solutions

* The approximation ratio of an algorithm 4 on
input 7 is:
A(n) / OPT(n)
where

A(7) - solution produced by algorithm 4
OPT(7) - optimal solution of the problem

Approximation Ratio/Performance Guarantee

* Approximation ratio (performance guarantee) of
algorithm 4: max approximation ratio over all
inputs of size n

— For a minimizing algorithm 4 (like ours):

* Approx Ratio = max, A(m) | OPT(n) = 1.0

a=n

— For maximization algorithms:
* Approx Ratio = min, A(m) | OPT(n) < 1.0

7l =n

9/19/2016

Approximation Ratio

SimpleReversalSort(z)
1for i€ 1lton-1
2 j € position of elementi in z (i.e., 7= i)

3 if j+ approximation

4 7€ 7 pij) ratio?

5 output = o

6 if zis the identity permutation at least
o (n-1)/2

7 return ,o00
B

Step0: 612345 Step0:612345 _"o

Step1: 162345 Stepl1:543216 O

Step2:126345 Step2:123456
Step3:123645
Step4:123465
Step5:123456

any better
greedy
algorithms?

New Idea: Adjacencies

= T 7. .. Ty g 7T,
* A pair of neighboring elements 7; and =, ,
are adjacent if

Ty =m 1

* For example:
7=193478265

* (3,4) or (7, 8) and (6,5) are adjacent pairs

9/19/2016

Breakpoints

Breakpoints occur between neighboring non-
adjacent elements:

7=1|9|3 4|7 8|2|6 5

* Pairs (1,9), (9,3), (4,7), (8,2) and (2,5) define 5
breakpoints of permutation 7z

* b(7) - # breakpoints in permutation 7

Extending Permutations

* One can place two elements 7 ,=0and =, ,;=n+1 at

the beginning and end of 7 respectively

n=1/9/3 4/7 8|26 5

l Extending with 0 and 10
n=01/93 4/7 8[2[6 5/10
A new breakpoint was created after extending

An extended permutation of n can have at most
(n+1) breakpoints, (n-1 between elements plus 2)

9/19/2016

Reversal Distance and Breakpoints

Breakpoints are the bottlenecks for sorting by reversals once
they are removed, the permutation is sorted.

Each “useful” reversal eliminates at least 1 and at most 2

breakpoints.
Consider the following application of

SimpleReversalSort(Extend(7)):

7=231465
0|2.3[1]4]6 5[7 b(

0 1|3 2(4|6 5|7 b(n) =
01234|65/7 b
01234567 b

5
4 -4
2
0

required S b(r)
reversals— 9

s

Sorting By Reversals:
A Better Greedy Algorithm

BreakPointReversalSort(x)
1 while 6(n) > 0

2 Among all possible reversals,
choose reversal p minimizing b(z * p)

1

3 €& pli,) '
4 output BAE
5 return

The "greedy” concept here is to
reduce as many breakpoints as
possible

Does it always terminate?
How can we be sure that removing

some breakpoints does not introduce
others?

10

9/19/2016

New Concept: Strips

* Strip: an interval between two consecutive
breakpoints in a permutation
— Decreasing strip: strip of elements in decreasing
order (e.g. 6 5and 32).
— Increasing strip: strip of elements in increasing

=+

order (e.g. 7 8)

019437825610

— ——p —p

— A single-element strip can be declared either
increasing or decreasing. We will choose to
declare them as decreasing with exception of
extension strips (with 0 and n+1)

11

Reducing the Number of Breakpoints
Consider 7=14657832

0 1/4/6 5|7 8[3 2|9 b(n=5

Which
reversal?
O

99 How can we be sure
that we don't
introduce new
breakpoints?

If permutation 7 contains at least one
decreasing strip, then there exists a
reversal p which decreases the number
of breakpoints (i.e. b(z * p) < b(7)).

12

9/19/2016

Things to Consider

Consider r=14657832

-
0 1/4|6 5|7 8|3 2|9 b(n =5

* Choose the decreasing strip with the smallest
element k in 7 (it'll always be the rightmost)

* Find k - 1 in the permutation
(it'll always be flanked by a

_. Thus, removing
the breakpoint

breakpoint)
* Reverse the segment between k and k-1 v\gﬂa”k"‘g “

13

Things to Consider

Consider 7=14657832
reduced by 1!

W
0123|87|56/4/9 bn=4

* Choose the decreasing strip with the smallest
element k in 7 (it'll always be the rightmost)

* Find k - 1 in the permutation
(it'll always be flanked by a
breakpoint)

* Reverse the segment between k and k-1
* Repeat until there is no decreasing strip

9/19/2016

Things to Consider

Consider r=14657832

T
01223|87|56[4]9 bn=4

* Choose the decreasing strip with the smallest
element k in 7 (it'll always be the rightmost)

* Find k - 1 in the permutation
(it'll always be flanked by a
breakpoint)

* Reverse the segment between k and k-1
* Repeat until there is no decreasing strip

Things to Consider

Consider r=14657832
T

01234/65|/789 bn=2

Choose the decreasing strip with the smallest
element k in 7 (it'll always be the rightmost)

Find k - 1 in the permutation
(it'll always be flanked by a

breakpoint)
Reverse the segment between k and k-1
Repeat until there is no decreasing strip

9/19/2016

Things to Consider

Consider r=14657832

N\
01234/65/789 bn=2

* Choose the decreasing strip with the smallest
element k in 7 (it'll always be the rightmost)

* Find k - 1 in the permutation
(it'll always be flanked by a
breakpoint)

* Reverse the segment between k and k-1
* Repeat until there is no decreasing strip

17

Things to Consider

Consider r=14657832

N\
0123 6789 bn=0

No breakpoint left!

Choose the decreasing strip with the smallest
element k in 7 (it'll always be the rightmost)

Find k - 1 in the permutation
(it'll always be flanked by a

breakpoint)
Reverse the segment between k and k-1
Repeat until there is no decreasing strip

9/19/2016

9/19/2016

Things to Consider

Consider r=14657832

01/4/6 578|329 bn=5

0123[87[56[4]9 bn=4 o
(7) =2
(=0

[~ permutation?
01234|/65(789 b
0123456789 Vb

2

19

Potential Gotcha

012|56 734|809

* If there is no decreasing strip, there may be no
strip-reversal p that reduces the number of breakpoints
(i.e. b(w* p) 2b(n) for any reversal p).

* However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged.

* Then the number of breakpoints will be reduced in the
following steps.

20

10

Potential Gotcha

k k-1

oo
012|765|34/89 bn=3

e If there is no decreasing strip, there may be no
strip-reversal p that reduces the number of breakpoints
(i.e. b(w* p) 2b(n) for any reversal p).

* However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged (or decreases).

* Then the number of breakpoints will be reduced in the

following steps.
21

Potential Gotcha

szll
012|/76543/89 bn=2

* If there is no decreasing strip, there may be no
strip-reversal p that reduces the number of breakpoints
(i.e. b(w* p) 2b(n) for any reversal p).

* However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged.

* Then the number of breakpoints will be reduced in the

following steps.
22

9/19/2016

11

Potential Gotcha

kll]f
012|76543|89 bn=2

e If there is no decreasing strip, there may be no
strip-reversal p that reduces the number of breakpoints
(i.e. b(w* p) 2b(n) for any reversal p).

* However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged.

* Then the number of breakpoints will be reduced in the

following steps.
23

Potential Gotcha

k-1 k
bl Y

0123456789 bn=0 T

* If there is no decreasing strip, there may be no
strip-reversal p that reduces the number of breakpoints
(i.e. b(w* p) 2b(n) for any reversal p).

* However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged.

* Then the number of breakpoints will be reduced in the

following steps.
24

9/19/2016

12

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(z)

1 while 6(n) > 0
2 if = has a decreasing strip
3 Among all possible reversals, choose reversal p
that minimizes b(z * p)
4 else
5 Choose a reversal pthat flips an increasing strip in 7
6 <€ mTep
7 output ~
8 return

25

In Python

def improvedBreakpointReversalSort(seq):
while hasBreakpoints(seq):
increasing, decreasing = getStrips(seq)
if len(decreasing) > O:
reversal = pickReversal(seq, decreasing)
else:
reversal = increasing[0]
print seq, "reversal”, reversal
seq = doReversal(seq,reversal)
print seq, "Sorted”
return

26

9/19/2016

13

Performance

* ImprovedBreakPointReversalSort is an approximation
algorithm with a performance guarantee of no worse
than 4

— It eliminates at least one breakpoint in every two
steps; at most 2b(7) steps

— Optimal algorithm eliminates at most 2 breakpoints in
every step: d(n) 2 b(n) / 2

Can we obtain a

— Approximation ratio: better
performance O0o
guarantee?
2b(r) _ 20(z) _,
d(z) = b(x)
2

27

A Better Approximation Ratio

* If there is a decreasing strip, the next reversal reduces
b(n) by at least one.

* The only bad case is when there is no decreasing strip,
as then we need a reversal that does not reduce b(7).
— If we could always choose a reversal reducing b(z) and, at the

same time, yielding a permutation that again has at least one
decreasing strip, the bad case would never occur.

— If all reversals that reduce b(7) create a permutation without
decreasing strips, then there exists a reversal that reduces b(7)
by two?!

— When the algorithm creates a permutation without decreasing strip,
the previous reversal must have reduced b(r) by two.
* At most b(7) reversals are needed.
e Approximation ratio: b(z) _b(z) _
d(z) ~ b(#)
2

28

9/19/2016

14

Both are Greedy Algorithms

e SimpleReversalSort ¢ ImprovedBreakPointReversalSort

— Attempts to reduce the number of

— Attempts to maximize breakpoints at each step
prefix(n) at each step — Performance guarantee: 2

— Performance guarantee: nT—l

Mouse (X chrom.)

9—.—1—

-
e
\, A Human (X chrom.)

29

Try it yourself

0 1/3|8 7 6/2|4 5|9 10

30

9/19/2016

15

