
9/19/2016

1

1

Genome Rearrangements

Study Chapters 5.3-5.5

2

From Last Time

• We developed a SimpleReversalSort algorithm that sorts
by extending its prefix on every iteration (n-1) steps.

• On p : 6 1 2 3 4 5

Flip 1: 1 6 2 3 4 5

Flip 2: 1 2 6 3 4 5

Flip 3: 1 2 3 6 4 5

Flip 4: 1 2 3 4 6 5

Flip 5: 1 2 3 4 5 6

• But it could have been sorted in two flips:

p : 6 1 2 3 4 5

Flip 1: 5 4 3 2 1 6

Flip 2: 1 2 3 4 5 6

We probably don’t want to use
this algorithm to estimate the
reversal distance between two
genomes

9/19/2016

2

3

Approximation Algorithms

• Today’s algorithms find approximate solutions
rather than optimal solutions

• The approximation ratio of an algorithm A on
input p is:

A(p) / OPT(p)

where

A(p) - solution produced by algorithm A
OPT(p) - optimal solution of the problem

4

Approximation Ratio/Performance Guarantee

• Approximation ratio (performance guarantee) of
algorithm A: max approximation ratio over all
inputs of size n

– For a minimizing algorithm A (like ours):

• Approx Ratio = max|p| = n A(p) / OPT(p) ≥ 1.0

– For maximization algorithms:
• Approx Ratio = min|p| = n A(p) / OPT(p) ≤ 1.0

9/19/2016

3

5

Approximation Ratio

SimpleReversalSort(p)

1 for i  1 to n – 1

2 j  position of element i in p (i.e., pj = i)

3 if j ≠i

4 p  p r(i, j)

5 output p

6 if p is the identity permutation

7 return

approximation

ratio?

Step 0: 6 1 2 3 4 5

Step 1: 1 6 2 3 4 5

Step 2: 1 2 6 3 4 5

Step 3: 1 2 3 6 4 5

Step 4: 1 2 3 4 6 5

Step 5: 1 2 3 4 5 6

at least
(n-1)/2

Step 0: 6 1 2 3 4 5

Step 1: 5 4 3 2 1 6

Step 2: 1 2 3 4 5 6
any better

greedy
algorithms?

6

p = p1p2p3…pn-1pn

• A pair of neighboring elements p i and p i + 1

are adjacent if

pi+1 = pi + 1

• For example:

p = 1 9 3 4 7 8 2 6 5

• (3, 4) or (7, 8) and (6,5) are adjacent pairs

New Idea: Adjacencies

9/19/2016

4

7

Breakpoints occur between neighboring non-
adjacent elements:

p = 1 9 3 4 7 8 2 6 5

• Pairs (1,9), (9,3), (4,7), (8,2) and (2,5) define 5
breakpoints of permutation p

• b(p) - # breakpoints in permutation p

Breakpoints

8

• One can place two elements p 0 =0 and p n + 1=n+1 at
the beginning and end of p respectively

Extending with 0 and 10

A new breakpoint was created after extending

Extending Permutations

p = 1 9 3 4 7 8 2 6 5

p = 0 1 9 3 4 7 8 2 6 5 10

An extended permutation of n can have at most
(n+1) breakpoints, (n-1 between elements plus 2)

9/19/2016

5

9

Reversal Distance and Breakpoints

 Breakpoints are the bottlenecks for sorting by reversals once
they are removed, the permutation is sorted.

 Each “useful” reversal eliminates at least 1 and at most 2
breakpoints.

 Consider the following application of
SimpleReversalSort(Extend(p)):

p = 2 3 1 4 6 5

0 2 3 1 4 6 5 7

0 1 3 2 4 6 5 7

0 1 2 3 4 6 5 7

0 1 2 3 4 5 6 7

b(p) = 5

b(p) = 4

b(p) = 2

b(p) = 0



required
reversals


b(p)

2

10

Sorting By Reversals:
A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals,
choose reversal r minimizing b(p • r)

3 p  p • r(i, j)

4 output p

5 return
Does it always terminate?

How can we be sure that removing
some breakpoints does not introduce
others?

The “greedy” concept here is to
reduce as many breakpoints as
possible

9/19/2016

6

11

New Concept: Strips

• Strip: an interval between two consecutive
breakpoints in a permutation
– Decreasing strip: strip of elements in decreasing

order (e.g. 6 5 and 3 2).
– Increasing strip: strip of elements in increasing

order (e.g. 7 8)

0 1 9 4 3 7 8 2 5 6 10

– A single-element strip can be declared either
increasing or decreasing. We will choose to
declare them as decreasing with exception of
extension strips (with 0 and n+1)

12

Reducing the Number of Breakpoints

If permutation p contains at least one
decreasing strip, then there exists a
reversal r which decreases the number
of breakpoints (i.e. b(p • r) < b(p)).

How can we be sure
that we don’t
introduce new
breakpoints?

Which
reversal?

Consider p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 5

9/19/2016

7

13

Things to Consider

• Choose the decreasing strip with the smallest
element k in p (it’ll always be the rightmost)

• Find k – 1 in the permutation
(it’ll always be flanked by a

breakpoint)

• Reverse the segment between k and k-1

Consider p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 521 4 6 5 7 8 3 2

Thus, removing

the breakpoint

flanking k-1

14

Things to Consider

• Choose the decreasing strip with the smallest
element k in p (it’ll always be the rightmost)

• Find k – 1 in the permutation
(it’ll always be flanked by a

breakpoint)

• Reverse the segment between k and k-1

• Repeat until there is no decreasing strip

Consider p = 1 4 6 5 7 8 3 2

0 1 2 3 8 7 5 6 4 9 b(p) = 41

reduced by 1!

9/19/2016

8

15

Things to Consider

• Choose the decreasing strip with the smallest
element k in p (it’ll always be the rightmost)

• Find k – 1 in the permutation
(it’ll always be flanked by a

breakpoint)

• Reverse the segment between k and k-1

• Repeat until there is no decreasing strip

Consider p = 1 4 6 5 7 8 3 2

0 1 2 3 8 7 5 6 4 9 b(p) = 443 8 7 5 6 4

16

Things to Consider

• Choose the decreasing strip with the smallest
element k in p (it’ll always be the rightmost)

• Find k – 1 in the permutation
(it’ll always be flanked by a

breakpoint)

• Reverse the segment between k and k-1

• Repeat until there is no decreasing strip

Consider p = 1 4 6 5 7 8 3 2

0 1 2 3 4 6 5 7 8 9 b(p) = 243

9/19/2016

9

17

Things to Consider

• Choose the decreasing strip with the smallest
element k in p (it’ll always be the rightmost)

• Find k – 1 in the permutation
(it’ll always be flanked by a

breakpoint)

• Reverse the segment between k and k-1

• Repeat until there is no decreasing strip

Consider p = 1 4 6 5 7 8 3 2

0 1 2 3 4 6 5 7 8 9 b(p) = 254 6 5

18

Things to Consider

• Choose the decreasing strip with the smallest
element k in p (it’ll always be the rightmost)

• Find k – 1 in the permutation
(it’ll always be flanked by a

breakpoint)

• Reverse the segment between k and k-1

• Repeat until there is no decreasing strip

Consider p = 1 4 6 5 7 8 3 2

0 1 2 3 4 5 6 7 8 9 b(p) = 0

No breakpoint left!

9/19/2016

10

19

Things to Consider

0 1 4 6 5 7 8 3 2 9 b(p) = 5

Consider p = 1 4 6 5 7 8 3 2

0 1 2 3 8 7 5 6 4 9 b(p) = 4

0 1 2 3 4 6 5 7 8 9 b(p) = 2

0 1 2 3 4 5 6 7 8 9 b(p) = 0

d(p) = 3

Does it work
for any

permutation?

20

Potential Gotcha

• If there is no decreasing strip, there may be no
strip-reversal r that reduces the number of breakpoints
(i.e. b(p • r) ≥ b(p) for any reversal r).

• However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged.

• Then the number of breakpoints will be reduced in the
following steps.

0 1 2 5 6 7 3 4 8 9

no
decreasing

strips!

b(p) = 3

Create one!

5 6 7

9/19/2016

11

21

Potential Gotcha

• If there is no decreasing strip, there may be no
strip-reversal r that reduces the number of breakpoints
(i.e. b(p • r) ≥ b(p) for any reversal r).

• However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged (or decreases).

• Then the number of breakpoints will be reduced in the
following steps.

0 1 2 7 6 5 3 4 8 9

one
decreasing

strip!

b(p) = 35

k k-1

43 4

22

Potential Gotcha

• If there is no decreasing strip, there may be no
strip-reversal r that reduces the number of breakpoints
(i.e. b(p • r) ≥ b(p) for any reversal r).

• However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged.

• Then the number of breakpoints will be reduced in the
following steps.

0 1 2 7 6 5 4 3 8 9

one
decreasing

strip!

b(p) = 25

k k-1

4

9/19/2016

12

23

Potential Gotcha

• If there is no decreasing strip, there may be no
strip-reversal r that reduces the number of breakpoints
(i.e. b(p • r) ≥ b(p) for any reversal r).

• However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged.

• Then the number of breakpoints will be reduced in the
following steps.

0 1 2 7 6 5 4 3 8 9

one
decreasing

strip!

b(p) = 23

kk-1

2 7 6 5 4 3

24

Potential Gotcha

• If there is no decreasing strip, there may be no
strip-reversal r that reduces the number of breakpoints
(i.e. b(p • r) ≥ b(p) for any reversal r).

• However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged.

• Then the number of breakpoints will be reduced in the
following steps.

0 1 2 3 4 5 6 7 8 9

DONE!

b(p) = 0

kk-1

2

9/19/2016

13

25

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(p)
1 while b(p) > 0
2 if p has a decreasing strip
3 Among all possible reversals, choose reversal r

that minimizes b(p • r)

4 else
5 Choose a reversal r that flips an increasing strip in p

6 p  p • r
7 output p
8 return

In Python

def improvedBreakpointReversalSort(seq):

while hasBreakpoints(seq):

increasing, decreasing = getStrips(seq)

if len(decreasing) > 0:

reversal = pickReversal(seq, decreasing)

else:

reversal = increasing[0]

print seq, "reversal", reversal

seq = doReversal(seq,reversal)

print seq, "Sorted”

return

26

9/19/2016

14

27

Performance

• ImprovedBreakPointReversalSort is an approximation
algorithm with a performance guarantee of no worse
than 4

– It eliminates at least one breakpoint in every two
steps; at most 2b(p) steps

– Optimal algorithm eliminates at most 2 breakpoints in
every step: d(p)  b(p) / 2

– Approximation ratio:

4

2

)(

)(2

)(

)(2


p

p

p

p

b

b

d

b

Can we obtain a
better

performance
guarantee?

28

A Better Approximation Ratio

• If there is a decreasing strip, the next reversal reduces
b(p) by at least one.

• The only bad case is when there is no decreasing strip,
as then we need a reversal that does not reduce b(p).
– If we could always choose a reversal reducing b(p) and, at the

same time, yielding a permutation that again has at least one
decreasing strip, the bad case would never occur.

– If all reversals that reduce b(p) create a permutation without
decreasing strips, then there exists a reversal that reduces b(p)
by two?!

– When the algorithm creates a permutation without decreasing strip,
the previous reversal must have reduced b(p) by two.

• At most b(p) reversals are needed.

• Approximation ratio: 2

2

)(

)(

)(

)(


p

p

p

p

b

b

d

b
correct?

9/19/2016

15

29

Both are Greedy Algorithms

• SimpleReversalSort

– Attempts to maximize
prefix(p) at each step

– Performance guarantee:

• ImprovedBreakPointReversalSort
– Attempts to reduce the number of

breakpoints at each step

– Performance guarantee: 2

2

1n

Mouse (X chrom.)

Human (X chrom.)

30

Try it yourself

0 1 3 8 7 6 2 4 5 9 10

