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Genome Rearrangements

Study Chapters 5.3-5.5
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From Last Time

• We developed a SimpleReversalSort algorithm that sorts 
by extending its prefix on every iteration (n-1) steps.

• On  p :  6 1 2 3 4 5

Flip 1: 1 6 2 3 4 5

Flip 2: 1 2 6 3 4 5 

Flip 3: 1 2 3 6 4 5

Flip 4: 1 2 3 4 6 5

Flip 5: 1 2 3 4 5 6

• But it could have been sorted in two flips:

p :   6 1 2 3 4 5

Flip 1:  5 4 3 2 1 6     

Flip 2:  1 2 3 4 5 6

We probably don’t want to use 
this algorithm to estimate the 
reversal distance between two 
genomes 
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Approximation Algorithms

• Today’s algorithms find approximate solutions 
rather than optimal solutions

• The approximation ratio of an algorithm A on 
input p is:

A(p) / OPT(p)

where 

A(p) - solution produced by algorithm A
OPT(p) - optimal solution of the problem

4

Approximation Ratio/Performance Guarantee

• Approximation ratio (performance guarantee) of 
algorithm A: max approximation ratio over all 
inputs of size n

– For a minimizing algorithm A (like ours):

• Approx Ratio = max|p| = n A(p) / OPT(p) ≥ 1.0

– For maximization algorithms:
• Approx Ratio = min|p| = n A(p) / OPT(p) ≤ 1.0
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Approximation Ratio

SimpleReversalSort(p)

1 for i  1 to n – 1

2 j  position of element i in p (i.e., pj = i)

3    if j ≠i

4       p  p r(i, j)

5       output p

6    if p is the identity permutation 

7       return

approximation 

ratio?

Step 0: 6 1 2 3 4 5

Step 1: 1 6 2 3 4 5

Step 2: 1 2 6 3 4 5 

Step 3: 1 2 3 6 4 5

Step 4: 1 2 3 4 6 5

Step 5: 1 2 3 4 5 6

at least 
(n-1)/2

Step 0: 6 1 2 3 4 5

Step 1: 5 4 3 2 1 6

Step 2: 1 2 3 4 5 6
any better 

greedy 
algorithms?

6

p = p1p2p3…pn-1pn

• A pair of neighboring elements p i and p i + 1

are adjacent if 

pi+1 = pi + 1

• For example:

p = 1  9  3  4  7  8  2  6  5

• (3, 4) or (7, 8) and (6,5) are adjacent pairs

New Idea: Adjacencies
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Breakpoints occur between neighboring non-
adjacent elements:

p = 1  9  3  4  7  8  2  6  5

• Pairs  (1,9), (9,3), (4,7), (8,2) and (2,5) define 5 
breakpoints of permutation p 

• b(p) - # breakpoints in permutation p

Breakpoints

8

• One can place two elements p 0 =0 and p n + 1=n+1 at 
the beginning and end of p respectively

Extending with 0 and 10

A new breakpoint was created after extending

Extending Permutations

p = 1  9  3  4  7  8  2  6  5

p = 0 1  9  3  4  7  8  2  6  5 10

An extended permutation of n can have at most 
(n+1) breakpoints, (n-1 between elements plus 2)
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Reversal Distance and Breakpoints

 Breakpoints are the bottlenecks for sorting by reversals once 
they are removed, the permutation is sorted.

 Each “useful” reversal eliminates at least 1 and at most 2 
breakpoints.

 Consider the following application of 
SimpleReversalSort(Extend(p)):

p = 2  3  1  4  6  5

0 2  3  1 4  6  5 7

0 1  3  2 4  6  5  7

0 1  2  3  4  6  5 7

0 1  2  3  4  5  6  7

b(p) = 5

b(p) = 4

b(p) = 2

b(p) = 0

 

required
reversals


b(p)

2
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Sorting By Reversals: 
A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals,   
choose reversal r minimizing b(p • r)

3 p  p • r(i, j)

4 output p

5 return
Does it always terminate?

How can we be sure that removing 
some breakpoints does not introduce 
others?

The “greedy” concept here is to 
reduce as many breakpoints as 
possible
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New Concept: Strips

• Strip: an interval between two consecutive 
breakpoints in a permutation 
– Decreasing strip: strip of elements in decreasing 

order (e.g. 6 5 and 3 2 ).
– Increasing strip: strip of elements in increasing 

order (e.g. 7 8)

0 1  9  4  3  7  8  2  5  6 10

– A single-element strip can be declared either 
increasing or decreasing. We will choose to 
declare them as decreasing with exception of 
extension strips (with 0 and n+1)

12

Reducing the Number of Breakpoints

If permutation p contains at least one 
decreasing strip, then there exists a 
reversal r which decreases the number 
of breakpoints (i.e. b(p • r) < b(p) ).

How can we be sure 
that we don’t 
introduce new 
breakpoints?

Which 
reversal?

Consider p = 1 4 6 5 7 8 3 2

0 1  4  6  5  7  8  3  2  9 b(p) = 5
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Things to Consider

• Choose the decreasing strip with the smallest 
element k in p (it’ll always be the rightmost) 

• Find k – 1 in the permutation 
(it’ll always be flanked by a 

breakpoint)

• Reverse the segment between k and k-1

Consider p = 1 4 6 5 7 8 3 2

0 1  4  6  5  7  8  3  2  9 b(p) = 521 4  6  5  7  8  3  2

Thus, removing 

the breakpoint 

flanking k-1 

14

Things to Consider

• Choose the decreasing strip with the smallest 
element k in p (it’ll always be the rightmost) 

• Find k – 1 in the permutation
(it’ll always be flanked by a 

breakpoint)

• Reverse the segment between k and k-1

• Repeat until there is no decreasing strip

Consider p = 1 4 6 5 7 8 3 2

0 1  2 3  8  7  5  6  4  9 b(p) = 41

reduced by 1!



9/19/2016

8

15

Things to Consider

• Choose the decreasing strip with the smallest 
element k in p (it’ll always be the rightmost) 

• Find k – 1 in the permutation
(it’ll always be flanked by a 

breakpoint)

• Reverse the segment between k and k-1

• Repeat until there is no decreasing strip

Consider p = 1 4 6 5 7 8 3 2

0 1  2  3  8  7  5  6  4  9 b(p) = 443 8  7  5  6  4

16

Things to Consider

• Choose the decreasing strip with the smallest 
element k in p (it’ll always be the rightmost)

• Find k – 1 in the permutation
(it’ll always be flanked by a 

breakpoint)

• Reverse the segment between k and k-1

• Repeat until there is no decreasing strip

Consider p = 1 4 6 5 7 8 3 2

0 1  2  3  4  6  5  7  8  9 b(p) = 243
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Things to Consider

• Choose the decreasing strip with the smallest 
element k in p (it’ll always be the rightmost) 

• Find k – 1 in the permutation
(it’ll always be flanked by a 

breakpoint)

• Reverse the segment between k and k-1

• Repeat until there is no decreasing strip

Consider p = 1 4 6 5 7 8 3 2

0 1  2  3  4  6  5  7  8  9 b(p) = 254 6  5

18

Things to Consider

• Choose the decreasing strip with the smallest 
element k in p (it’ll always be the rightmost) 

• Find k – 1 in the permutation
(it’ll always be flanked by a 

breakpoint)

• Reverse the segment between k and k-1

• Repeat until there is no decreasing strip

Consider p = 1 4 6 5 7 8 3 2

0 1  2  3  4 5 6  7  8  9 b(p) = 0

No breakpoint left!
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Things to Consider

0 1  4  6  5  7  8  3  2  9 b(p) = 5

Consider p = 1 4 6 5 7 8 3 2

0 1  2  3  8  7  5  6  4  9 b(p) = 4

0 1  2  3  4  6  5  7  8  9 b(p) = 2

0 1  2  3  4  5  6  7  8  9 b(p) = 0

d(p) = 3

Does it work 
for any 

permutation?

20

Potential Gotcha

• If there is no decreasing strip, there may be no 
strip-reversal r that reduces the number of breakpoints
(i.e. b(p • r)  ≥ b(p) for any  reversal r). 

• However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged. 

• Then the number of breakpoints will be reduced in the 
following steps.

0 1  2  5  6  7  3  4  8  9

no 
decreasing 

strips!

b(p) = 3

Create one!

5  6  7
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Potential Gotcha

• If there is no decreasing strip, there may be no 
strip-reversal r that reduces the number of breakpoints
(i.e. b(p • r)  ≥ b(p) for any  reversal r). 

• However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged (or decreases). 

• Then the number of breakpoints will be reduced in the 
following steps.

0 1  2  7  6  5  3  4  8  9

one
decreasing 

strip!

b(p) = 35

k k-1

43  4

22

Potential Gotcha

• If there is no decreasing strip, there may be no 
strip-reversal r that reduces the number of breakpoints
(i.e. b(p • r)  ≥ b(p) for any  reversal r). 

• However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged. 

• Then the number of breakpoints will be reduced in the 
following steps.

0 1  2  7  6  5  4  3  8  9

one
decreasing 

strip!

b(p) = 25

k k-1

4
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Potential Gotcha

• If there is no decreasing strip, there may be no 
strip-reversal r that reduces the number of breakpoints
(i.e. b(p • r)  ≥ b(p) for any  reversal r). 

• However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged. 

• Then the number of breakpoints will be reduced in the 
following steps.

0 1  2  7  6  5  4  3  8  9

one
decreasing 

strip!

b(p) = 23

kk-1

2 7  6  5  4  3

24

Potential Gotcha

• If there is no decreasing strip, there may be no 
strip-reversal r that reduces the number of breakpoints
(i.e. b(p • r)  ≥ b(p) for any  reversal r). 

• However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged. 

• Then the number of breakpoints will be reduced in the 
following steps.

0 1  2  3 4  5  6  7  8  9

DONE!

b(p) = 0

kk-1

2
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ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(p)
1 while b(p) > 0
2     if p has a decreasing strip
3 Among all possible reversals, choose reversal r

that   minimizes b(p • r)

4     else
5        Choose a reversal r that flips an increasing strip in p

6   p  p • r
7      output p
8  return

In Python

def improvedBreakpointReversalSort(seq):

while hasBreakpoints(seq):

increasing, decreasing = getStrips(seq)

if len(decreasing) > 0:

reversal = pickReversal(seq, decreasing)

else:

reversal = increasing[0]

print seq, "reversal", reversal

seq = doReversal(seq,reversal)

print seq, "Sorted”

return

26
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Performance

• ImprovedBreakPointReversalSort is an approximation 
algorithm with a performance guarantee of no worse 
than 4

– It eliminates at least one breakpoint in every two 
steps;  at most 2b(p) steps

– Optimal algorithm eliminates at most 2 breakpoints in 
every step: d(p)  b(p) / 2

– Approximation ratio:

4
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Can we obtain a 
better 

performance 
guarantee?
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A Better Approximation Ratio

• If there is a decreasing strip, the next reversal reduces 
b(p) by at least one.

• The only bad case is when there is no decreasing strip, 
as then we need a reversal that does not reduce b(p).
– If we could always choose a reversal reducing b(p) and, at the 

same time, yielding a permutation that again has at least one 
decreasing strip, the bad case would never occur.

– If all reversals that reduce b(p) create a permutation without 
decreasing strips, then there exists a reversal that reduces b(p) 
by two?! 

– When the algorithm creates a permutation without decreasing strip, 
the previous reversal must have reduced b(p) by two.

• At most b(p) reversals are needed.

• Approximation ratio: 2
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Both are Greedy Algorithms

• SimpleReversalSort

– Attempts to maximize 
prefix(p) at each step

– Performance guarantee:

• ImprovedBreakPointReversalSort
– Attempts to reduce the number of 

breakpoints at each step

– Performance guarantee: 2

2

1n

Mouse (X chrom.)

Human (X chrom.)

30

Try it yourself

0 1  3  8  7  6  2  4  5  9  10


