COMP 465: Data Mining
Recommender Systems

Slides Adapted From: www.mmds.org (Mining Massive Datasets)

Example: Recommender Systems

- **Customer X**
 - Buys Metallica CD
 - Buys Megadeth CD

- **Customer Y**
 - Does search on Metallica
 - Recommender system suggests Megadeth from data collected about customer X

Recommendations

<table>
<thead>
<tr>
<th>Search</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
<td>Products, web sites, blogs, news items, …</td>
</tr>
</tbody>
</table>

Examples:

- amazon.com
- StumbleUpon
- del.icio.us
- movielens
- last.fm
- Google
- YouTube
- XBOX
- LIVE

From Scarcity to Abundance

- **Shelf space is a scarce commodity for traditional retailers**
 - Also: TV networks, movie theaters,…

- **Web enables near-zero-cost dissemination of information about products**
 - From scarcity to abundance

- **More choice necessitates better filters**
 - Recommendation engines
 - How *Into Thin Air* made *Touching the Void* a bestseller: http://www.wired.com/wired/archive/12.10/tail.html
Sidenote: The Long Tail

- Editorial and hand curated
 - List of favorites
 - Lists of “essential” items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, ...

Formal Model

- $X =$ set of Customers
- $S =$ set of Items
- Utility function $u: X \times S \rightarrow R$
 - $R =$ set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in $[0,1]$

Utility Matrix

<table>
<thead>
<tr>
<th></th>
<th>Avatar</th>
<th>LOTR</th>
<th>Matrix</th>
<th>Pirates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Bob</td>
<td>0.5</td>
<td>0.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>0.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David</td>
<td></td>
<td></td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>
Key Problems

- **(1) Gathering “known” ratings for matrix**
 - How to collect the data in the utility matrix

- **(2) Extrapolate unknown ratings from the known ones**
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don’t like but what you like

- **(3) Evaluating extrapolation methods**
 - How to measure success/performance of recommendation methods

(1) Gathering Ratings

- **Explicit**
 - Ask people to rate items
 - Doesn’t work well in practice – people can’t be bothered

- **Implicit**
 - Learn ratings from user actions
 - E.g., purchase implies high rating
 - What about low ratings?

(2) Extrapolating Utilities

- **Key problem:** Utility matrix U is sparse
 - Most people have not rated most items
 - **Cold start:**
 - New items have no ratings
 - New users have no history

- **Three approaches to recommender systems:**
 - 1) Content-based
 - 2) Collaborative
 - 3) Latent factor based

Content-based Recommender Systems
Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:
- **Movie recommendations**
 - Recommend movies with same actor(s), director, genre, ...
- **Websites, blogs, news**
 - Recommend other sites with "similar" content

Item Profiles

- For each item, create an **item profile**
- **Profile is a set (vector) of features**
 - **Movies:** author, title, actor, director,...
 - **Text:** Set of "important" words in document
- **How to pick important features?**
 - Usual heuristic from text mining is TF-IDF
 - **Term ... Feature**
 - **Document ... Item**

Sidenote: TF-IDF

$f_{ij} = \text{frequency of term (feature) } i \text{ in doc (item) } j$

$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$

$n_i = \text{number of docs that mention term } i$

$N = \text{total number of docs}$

$IDF_i = \log \frac{N}{n_i}$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest TF-IDF scores, together with their scores
User Profiles and Prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - **Variation:** weight by difference from average rating for item
- ... **Prediction heuristic:**
 - Given user profile \(\mathbf{x} \) and item profile \(\mathbf{i} \), estimate
 \[
 u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{\mathbf{x} \cdot \mathbf{i}}{||\mathbf{x}|| ||\mathbf{i}||}
 \]

Pros: Content-based Approach

- **+**: No need for data on other users
 - No cold-start or sparsity problems
- **+**: Able to recommend to users with unique tastes
- **+**: Able to recommend new & unpopular items
 - No first-rater problem
- **+**: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- **−**: Finding the appropriate features is hard
 - E.g., images, movies, music
- **−**: Recommendations for new users
 - How to build a user profile?
- **−**: Overspecialization
 - Never recommends items outside user’s content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Collaborative Filtering

Harnessing quality judgments of other users
Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are \textit{similar} to x’s ratings
- Estimate x’s ratings based on ratings of users in N

Similarity Metric

- Intuitively we want: $\text{sim}(A, B) > \text{sim}(A, C)$
- Jaccard similarity: $1/5 < 2/4$
- Cosine similarity: $0.386 > 0.322$
 - Considers missing ratings as \textit{negative}
 - Solution: subtract the (row) mean

Rating Predictions

From similarity metric to recommendations:
- Let r_x be the vector of user x’s ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item s of user x:
 - $r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$
 - $r_{xi} = \frac{\sum_{y \in N} s_{xy} r_{yi}}{\sum_{y \in N} s_{xy}}$
 - Other options?
 - Many other tricks possible...

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item i, find other similar items
 - Estimate rating for item i based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

\[r_{ui} = \frac{\sum_{j \in N(i, x)} s_{ij} \cdot r_{uj}}{\sum_{j \in N(i, x)} s_{ij}} \]

- s_{ij}: similarity of items i and j
- r_{ui}: rating of user u on item j
- $N(i, x)$: set items rated by x similar to i
Item-Item CF (|N|=2)

- **Users:**
 - 1: 3, 5, 4
 - 2: 5, 4
 - 3: 2, 4, 1, 2, 3, 4, 5
 - 4: 2, 4, 5, 2
 - 5: 4, 3, 2, 2, 5
 - 6: 1, 3, 3, 2, 4

- **Movies:**
 - 1: 3
 - 2: 4
 - 3: 2, 4, 1, 2, 3, 4, 5
 - 4: 2, 4, 5, 2
 - 5: 4, 3, 2, 2, 5
 - 6: 1, 3, 3, 2, 4

- Unknown rating: □
- Rating between 1 to 5: ▶

Neighbor selection:
- Identify movies similar to movie 1, rated by user 5

Compute similarity weights:
- \(s_{1,3} = 0.41 \), \(s_{1,6} = 0.59 \)

Item-Item CF (|N|=2)

- **Users:**
 - 1: 3, 5, 4
 - 2: 5, 4
 - 3: 2, 4, 1, 2, 3, 4, 5
 - 4: 2, 4, 5, 2
 - 5: 4, 3, 2, 2, 5
 - 6: 1, 3, 3, 2, 4

- **Movies:**
 - 1: 3
 - 2: 4
 - 3: 2, 4, 1, 2, 3, 4, 5
 - 4: 2, 4, 5, 2
 - 5: 4, 3, 2, 2, 5
 - 6: 1, 3, 3, 2, 4

- **Sim(1,m):**
 - 1.00
 - -0.18
 - 0.41
 - -0.10
 - -0.31
 - 0.59

Here we use Pearson correlation as similarity:
1) Subtract mean rating, \(m_i \), from each movie \(i \):
 \[m_{1,2,3} = \left(\frac{1+3+5+5+4}{5} \right) = 3.6 \]
2) Compute cosine similarities between rows:
3) Compute similarity weights:
 \[s_{1,3} = 0.41 \], \[s_{1,6} = 0.59 \]
Item-Item CF ($|N|=2$)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>2.6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>4</td>
<td>4</td>
<td></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Predict by taking weighted average:

$r_{1,2} = \frac{(0.41*2 + 0.59*3)}{(0.41+0.59)} = 2.6$

Item-Item vs. User-User

- In theory, user-user and item-item are dual approaches.
- In practice, item-item outperforms user-user in many use cases.
- Items are “simpler” than users
 - Items belong to a small set of “genres”, users have varied tastes.
 - Item Similarity is more meaningful than User Similarity

Pros/Cons of Collaborative Filtering

- **+ Works for any kind of item**
 - No feature selection needed
- **- Cold Start:**
 - Need enough users in the system to find a match
- **- Sparsity:**
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items
- **- First rater:**
 - Cannot recommend an item that has not been previously rated
 - New items, Esoteric items
- **- Popularity bias:**
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items