CS342: Bioinformatics
Lecture 6
The Motif Finding Problem

• **Goal**: Given a set of DNA sequences, find a set of \(ℓ \)-mers, one from each sequence, that maximizes the consensus score.

• **Input**: A \(t \times n \) matrix of DNA, and \(ℓ \), the length of the pattern to find.

• **Output**: An array of \(t \) starting positions \(s = (s_1, s_2, \ldots, s_t) \) maximizing \(\text{Score}(s, \text{DNA}) \).
Scoring Motifs

• Given \(s = (s_1, \ldots, s_t) \) and DNA:

\[
Score(s, DNA) = \sum_{i=1}^{l} \max_{k \in \{A,C,G,T\}} \text{count}(k, i)
\]

Consensus \(a\ c\ g\ t\ a\ c\ g\ t \)

Score \(3+4+4+5+3+4+3+4=30 \)
Brute Force Solution

- Compute the scores for all possible combinations of starting positions s
- The best score determines the best profile and the consensus pattern in DNA
- The goal is to maximize $Score(s, DNA, l)$ by varying the starting positions s_i, where:

$$s_i = [1, \ldots, n-l+1]$$
$$i = [1, \ldots, t]$$
Brute Force Pseudocode

1. BruteForceMotifSearch(DNA, t, n, l)
2. bestScore ← 0
3. for each s = (s₁, s₂, ..., sₜ) from (1, 1, ..., 1) to (n - l+1, n - l+1, ..., n - l+1)
4. if score(s, DNA, l) > bestScore
5. bestScore ← score(s, DNA, l)
6. bestMotif ← (s₁, s₂, ..., sₜ)
7. return bestMotif
The Median String Problem

• Given a set of t DNA sequences find a pattern that appears in all t sequences with the minimum number of mutations
• This pattern will be the motif
• Rather than finding the maximal consensus string, this approach attempts to find the minimal distance string
Total Distance: An Example

• Given $v = \text{“acgtacgt”}$ and s

$$d_H(v, x) = 0$$

v is the sequence in red, x is the sequence in blue

• $TotalDistance(v, DNA) = 0$
Total Distance: An Example

- Given \(v = \text{“acgtacgt”} \) and \(s \)

\[
\begin{align*}
 d_H(v, x) &= 1 \\
 d_H(v, y) &= 0 \\
 d_H(v, z) &= 2 \\
 d_H(v, w) &= 0
\end{align*}
\]

\(v \) is the sequence in \textbf{red}, \(x \) is the sequence in \textbf{blue}

- **TotalDistance**(\(v, \text{DNA} \)) = 1 + 0 + 2 + 0 + 1 = 4
Total Distance: Definition

- For each DNA sequence i, compute all $d_H(v, x)$, where x is an ℓ-mer with starting position s_i
 \[(1 \leq s_i \leq n - \ell + 1)\]
- Find minimum of $d_H(v, x)$ among all ℓ-mers in sequence i
- $TotalDistance(v, DNA)$ is the sum of the minimum Hamming distances for each DNA sequence i
- $TotalDistance(v, DNA) = \min_s d_H(v, s)$, where s is the set of starting positions $s_1, s_2, \ldots s_t$
The Median String Problem

• **Goal:** Given a set of DNA sequences, find a median string

• **Input:** A $t \times n$ matrix DNA, and l, the length of the pattern to find

• **Output:** A string v of l nucleotides that minimizes $TotalDistance(v, DNA)$ over all strings of that length
Median String Search Algorithm

1. MedianStringSearch(DNA, t, n, l)
2. bestMotif ← ""
3. bestDistance ← t × l
4. for each l–mer, s, from “aaa…a” to “ttt…t”
5. if TotalDistance(s, DNA) < bestDistance
6. bestDistance ← TotalDistance(s, DNA)
7. bestMotif ← s
8. return bestMotif
Equivalent Problems

- Motif Finding Problem ≡ Median String Problem
- The Motif Finding is a maximization problem while Median String is a minimization problem
- However, the Motif Finding problem and Median String problem are computationally equivalent (they give the same output for a common input)
- Need to show that minimizing TotalDistance is equivalent to maximizing Score
We’re looking for the same thing

- At any column i
 \[\text{Score}_i + \text{TotalDistance}_i = t \]

- Because there are l columns
 \[\text{Score} + \text{TotalDistance} = l \times t \]

- Rearranging:
 \[\text{Score} = l \times t - \text{TotalDistance} \]

- $l \times t$ is constant: the minimization of the right side is equivalent to the maximization of the left side
Why Bother?

• What is the point of reformulating the Motif Finding problem as the Median String problem?
1. **BruteForceMotifSearch**(DNA, t, n, l)
2. bestScore $\leftarrow 0$
3. for each $s = (s_1, s_2, ..., s_t)$ from (1, 1, ..., 1) to (n- /+1, n- /+1, ..., n- /+1)
4. if score(s, DNA, l) > bestScore
5. bestScore \leftarrow score(s, DNA, l)
6. bestMotif $\leftarrow (s_1, s_2, ..., s_t)$
7. return bestMotif
How to Structure the Search?

• How can we perform the line

\[
\text{for each } s=(s_1, s_2, \ldots, s_t) \text{ from } (1,1 \ldots 1) \text{ to } (n-\ell+1, \ldots, n-\ell+1)\?
\]

• We need a method to more efficiently examine the many possible motifs locations

• This is not very different than exploring all “t-digit base } (n-l+1)\” numbers
Improving Median String

1. MedianStringSearch(DNA, t, n, l)
2. bestMotif $\leftarrow ""$
3. bestDistance $\leftarrow t \times l$
4. for each l-mer, v, from “aaa...a” to “ttt...t”
5. if TotalDistance(v, DNA) $< bestDistance$
6. bestDistance \leftarrow TotalDistance(v, DNA)
7. bestMotif $\leftarrow v$
8. return bestMotif
How to Best Explore Permutations?

• For the Median String Problem we need to consider all 4^ℓ possible ℓ-mers:

 aa... aa
 aa... ac
 aa... ag
 aa... at
 aa... ca
 ...
 ...
 tt... tt

How to organize this search?
Simple Code

```python
def NextLeaf(a, L, k):
    # generates L^k permutations
    for i in reversed(range(L)):
        if (a[i] < k):
            a[i] += 1
            break
        else:
            a[i] = 1
    return a
```

• Each call generates a new permutation
NextLeaf Usage

```python
def AllLeaves(L, k):
    a = [1 for i in xrange(L)]
    while True:
        print a
        a = NextLeaf(a, L, k)
        if (sum(a) == L):
            return
```

• Is there another way to search permutations?
Search Tree

• Our standard method for enumerating permutations just traverses the leaf nodes.
• Suppose after checking the first or second letter we already know the solution could not be the one we are looking for?
Analyzing Search Trees

• Characteristics of the search trees:
 • The unique permutations reside at leaves
 • A parent node is a common prefix of its children

• How can we traverse the tree?

• Things we’d like to do:
 • Visit all the nodes (interior and leaves)
 • Visit the next node (in an ordered way)
 • Bypass the children of a node
Depth First Search

• Start from the root and explore down to the bottom one path at a time
Visiting the Next Vertex

- Uses 0s to encode unspecified part of interior nodes (the dashes in our figure)

```python
def NextVertex(a, i, L, k):
    if (i < L):
        a[i] = 1
        return (a, i+1)
    else:
        for j in reversed(range(L)):
            if (a[j] < k):
                a[j] += 1
                return (a, j+1)
        a[j] = 0
    return (a, 0)
```
Bypass Nodes

- Given a prefix (internal vertex), find next vertex after skipping all of the current vertex’s children

```python
def Bypass(a, i, L, k):
    for j in reversed(range(i)):
        if (a[j] < k):
            a[j] += 1
            return (a, j+1)
    a[j] = 0
    return (a, 0)
```
Bypass Example

- Bypassing descendents of nodes “12—” and “211-”

Initial Location

Location after 4 moves
Revisiting Brute Force Search

• Now that we have method for navigating the tree, let’s convert our pseudocode version of BruteForceMotifSearch to real code

```python
def BruteForceMotifSearchAgain(DNA, t, n, l):
    s = [1 for i in range(t)]
    bestScore = Score(s, DNA)
    while (True):
        s = NextLeaf(s, t, n-l+1)
        if (Score(s, DNA) > bestScore):
            bestScore = Score(s, DNA)
            bestMotif = [x for x in s]
        if (sum(s) == t):
            break
    return bestMotif
```
Can We Do Better?

• Sets of \(s=(s_1, s_2, ..., s_t) \) may have a weak profile for the first \(i \) positions \((s_1, s_2, ..., s_i)\)
• Every row of alignment may add at most \(\ell \) to Score
• Optimism: if all subsequent \((t-i)\) positions \((s_{i+1}, ..., s_t)\) add

\[
(t - i) \times \ell \text{ to } \text{Score}(s, i, DNA)
\]

• If \(\text{Score}(s, i, DNA) + (t - i) \times \ell < \text{BestScore} \), it makes no sense to search subtrees of the current vertex
 • Use ByPass()
Rewrite Using Tree Traversal

• Before we apply a branch-and-bound strategy let’s rewrite the brute-force algorithm using a search tree

```python
def SimpleMotifSearch(DNA, t, n, l):
    s = [0 for i in range(t)]
    bestScore = 0
    i = 0
    while (True):
        if (i < t):
            s, i = NextVertex(s, i, t, n-l+1)
        else:
            if (Score(s, DNA, l) > bestScore):
                bestScore = Score(s, DNA, l)
                bestMotif = [x for x in s]
                s, i = NextVertex(s, i, t, n-l+1)
                if (sum(s) == 0):
                    break
    return bestMotif
```
Branch and Bound Motif Search

• Since each level of the tree goes deeper into search, discarding a prefix discards all following branches

• This saves us from looking at $(n - \ell + 1)^{t-i}$ leaves
 • Use NextVertex() and ByPass() to navigate the tree
def BranchAndBoundMotifSearch(DNA,t,n,l):
 s = [0 for i in xrange(t)]
 bestScore = 0
 i = 0
 while (True):
 if (i < t):
 optimisticScore = Score(s, DNA, l) + (t-i)*l
 if (optimisticScore < bestScore):
 s, i = Bypass(s,i,t,n-l+1)
 else:
 s, i = NextVertex(s,i,t,n-l+1)
 else:
 score = Score(s, DNA, l)
 if (score > bestScore):
 bestScore = score
 bestMotif = [x for x in s]
 s, i = NextVertex(s,i,t,n-l+1)
 if (sum(s) == 0):
 break
 return bestMotif
Improving Median Search

• Recall the computational differences between motif search and median string search
 • The Motif Finding Problem needs to examine all
 \((n - l + 1)^t\) combinations for \(s\).
 • The Median String Problem needs to examine \(4^\ell\) combinations of \(v\).
 This number is relatively small

• We want to use median string algorithm with the Branch and Bound trick!
Insight for Improving Median Search

• Note that if, at any point, the total distance for a prefix is greater than that for the best word so far:

\[
\text{TotalDistance (prefix, DNA) > BestDistance}
\]

there is no use exploring the remaining part of the word

• We can eliminate that branch and BYPASS exploring that branch further
Bounded Median String Search

```python
def BranchAndBoundMedianSearch(DNA, t, n, l):
    s = [1 for i in xrange(t)]
    bestDistance, bestWord = l*t, ''
    i = 1
    while (i > 0):
        if (i < l):
            prefix = NucleotideString(s, i)
            optimisticDistance = TotalDistance(prefix, DNA)
            if (optimisticDistance > bestDistance):
                s, i = Bypass(s, i, l, t)
            else:
                s, i = NextVertex(s, i, l, t)
        else:
            word = NucleotideString(s, l)
            if (TotalDistance(word, DNA) < bestDistance):
                bestDistance = TotalDistance(word, DNA)
                bestWord = word
                s, i = NextVertex(s, i, l, t)
    return bestWord
```
Today’s Bad Example

• The example used in today’s lecture was the best motif until we allowed the mutations!

• The target motif has a consensus score of 30
 • But [2, 5, 46, 4, 1] = 31 and [2, 5, 46, 6, 1] = 34
 • >30 solutions with consensus of 30 or better
 • Which is the real Motif?
Greedy Algorithms

• **Def:** Algorithms that make locally optimal choices using a metric with the hope of finding a globally optimal solution.

• **Example:** Making change with US coins.

• **Optimization Problem:** Given an input, compute a solution, subject to various constraints, that either minimizes cost or maximizes profit.
Coin-Changing: Greedy Algorithm

Cashier’s algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

```
Sort coins denominations by value: c_1 < c_2 < ... < c_n.

coins selected

S \leftarrow \emptyset
while (x \neq 0) {
    let k be largest integer such that c_k \leq x
    if (k = 0)
        return "no solution found"
    x \leftarrow x - c_k
    S \leftarrow S \cup \{k\}
}
return S
```