CS342: Bioinformatics
Multiple Alignments

Section 6.10
Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two? And what for?
- A faint similarity between two sequences becomes significant if present in many.
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal.
Generalizing Pairwise Alignment

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

\[
\begin{align*}
 \text{AT} & \quad \text{GC} & \quad \text{G} & \quad _ \\
 \text{A} & \quad _ & \quad \text{C} & \quad \text{G} & \quad \text{T} & \quad _ & \quad \text{A} \\
 \text{A} & \quad \text{T} & \quad \text{C} & \quad \text{A} & \quad _ & \quad _ & \quad \text{A} \\
 \text{A} & \quad \text{T} & \quad \text{C} & \quad \text{A} & \quad \text{C} & \quad _ & \quad \text{A}
\end{align*}
\]

- Score: more conserved columns, better alignment
Alignment Paths

• Align 3 sequences: ATGC, AATC, ATGC

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>--</td>
<td>T</td>
<td>G</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>T</td>
<td>--</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>A</td>
<td>T</td>
<td>G</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- x coordinate
- y coordinate
- z coordinate

• Resulting path in \((x,y,z)\) space:

\[(0,0,0) \rightarrow (1,1,0) \rightarrow (1,2,1) \rightarrow (2,3,2) \rightarrow (3,3,3) \rightarrow (4,4,4)\]
Aligning Three Sequences

- Same strategy as aligning two sequences
- Use a 3-D “Manhattan Cube”, with each axis representing a sequence to align
- For global alignments, go from source to sink
2-D vs 3-D Alignment Grid

2-D edit graph

3-D edit graph
2-D cell versus 3-D Alignment Cell

In 2-D, 3 edges lead to each interior vertex

In 3-D, 7 edges lead to each interior vertex

- 2-D \([(i-1,j-1), (i-1,j), (i,j-1)] \rightarrow (i,j)]
- 3-D \([(i-1,j-1,k-1), (i-1,j,k), (i,j,k-1), (i,j,k-1), (i-1,j,k-1), (i-1,j,k-1), (i-1,k,k-1)] \rightarrow (i,j,k)\)
Architecture of 3-D Alignment Cell

1 - Match/Mismatch Path

6 – indels Paths
3 in one seq
3 in two seqs
Multiple Alignment: Dynamic Programming

- \(s_{i,j,k} = \max \) \[
\begin{align*}
 s_{i-1,j-1,k-1} &+ \delta(v_i, w_j, u_k) \\
 s_{i-1,j,k} &+ \delta(v_i, w_j, _) \\
 s_{i-1,j,k-1} &+ \delta(v_i, _, u_k) \\
 s_{i,j-1,k} &+ \delta(_, w_j, u_k) \\
 s_{i-1,j,k} &+ \delta(v_i, _, _) \\
 s_{i,j,k} &+ \delta(_, w_j, u_k) \\
 s_{i,j,k-1} &+ \delta(_, _, u_k)
\end{align*}
\]

- \(\delta(x, y, z) \) is an entry in the 3-D scoring matrix

- cube diagonal: no indels
- face diagonal: one indel
- Lattice edge: two indels
Multiple Alignment: Running Time

• For 3 sequences of length \(n \), the run time is \(7n^3; \) \(O(n^3) \)

• For \(k \) sequences, build a \(k \)-dimensional table, with run time \((2^k-1)(n^k); \) \(O(2^k n^k) \)

• Conclusion: dynamic programming approach for alignment between two sequences is easily extended to \(k \) sequences but it is impractical due to exponential running time
Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

\[x: \text{AC-GCGG-C} \]
\[y: \text{AC-GC-GAG} \]
\[z: \text{GCCGC-GAG} \]

Induces:

\[x: \text{ACGCGG-C}; \quad x: \text{AC-GCGG-C}; \quad y: \text{AC-GCGAG} \]
\[y: \text{ACGC-GAC}; \quad z: \text{GCCGC-GAG}; \quad z: \text{GCCGCGAG} \]
Inverse Problem: Do Pairwise Alignments imply a Multiple Alignment?

Given 3 arbitrary pairwise alignments:

\[
\begin{align*}
x & : \text{ACGCTGG--C;} & x & : \text{AC-GCTGG--C;} & y & : \text{AC-GC-GAG} \\
y & : \text{ACGC--GAC;} & z & : \text{GCCGCA-GAG;} & z & : \text{GCCGCAGAG}
\end{align*}
\]

Can we construct a multiple alignment that induces them?

NOT ALWAYS

Why? Because pairwise alignments may be arbitrarily inconsistent
Combining Optimal Pairwise Alignments into Multiple Alignment

Can combine pairwise alignments into multiple alignment

Can *not* combine pairwise alignments into multiple alignment
Inferring Multiple Alignment from Pairwise Alignments

- From an optimal multiple alignment, we can infer pairwise alignments between all pairs of sequences, but they are not necessarily optimal.
- It is difficult to infer a “good” multiple alignment from optimal pairwise alignments between all sequences.
- Are we stuck, or is there some other trick?
Multiple Alignment using Profile Scores

- A G G C T A T C A C C T G
T A G - C T A C C A - - - G
C A G - C T A C C A - - - G
C A G - C T A T C A C - G G
C A G - C T A T C G C - G G

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>0</th>
<th>5</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>5</th>
<th>0</th>
<th>0</th>
<th>4</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- Thus far we have aligned a sequence against other sequences
- Can we align a sequence against a profile?
- Can we align a profile against a profile?
Aligning alignments

• Given two alignments, can we align them?

x GGGCACTGCAT
y GGTTACGTC-- Alignment 1
z GGGAAACTGCAG

w GGACGTACC-- Alignment 2
v GGACCT------
Aligning alignments

• Given two alignments, can we align them?
• Hint: don’t use the sequences…
 align their profiles

x GGGCAC=TGCAT
y GGTTAC=GTC--
z GGGAAC=TGCAG
 || || | | | Combined Alignment
w GG==ACGTACC--
v GG==ACCT------
Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and combine into a profile, thereby reducing alignment of k sequences to an alignment of of $k-1$ sequences/profiles. **Repeat**
- This is a heuristic *greedy* method

\[\begin{align*}
 u_1 &= \text{ACGTACGTACGT} \ldots \\
 u_2 &= \text{TTAATTAATTTAA} \ldots \\
 u_3 &= \text{ACTACTACTACT} \ldots \\
 \vdots \\
 u_k &= \text{CCGGCCCGGCCCGG} \\
 u_1 &= \text{ACg/tTACg/tTACg/cT} \ldots \\
 u_2 &= \text{TTAATTAATTTAA} \ldots \\
 \vdots \\
 u_k &= \text{CCGGCCCGGCCCGG} \\
 k-1
\end{align*} \]
Greedy Approach: Example

• Consider these 4 sequences

S1: GATTCA
S2: GTCTGA
S3: GATATT
S4: GTCAGC

Scoring Matrix:
Match = 1
Mismatch = -1
Indel = -1
Greedy Approach: Example

• There are $\binom{4}{2} = 6$ possible alignments

\begin{align*}
s2 & \quad \text{GTCTGA} & s1 & \quad \text{GATTCA--} \\
s4 & \quad \text{GTCAGC (score = 2)} & s4 & \quad \text{G-T-CAGC (score = 0)} \\
\text{s1 GAT-TCA} & & & \\
\text{s2 G-TCTGA (score = 1)} & & &\
\text{s1 GAT-TCA} & & & \\
\text{s2 G-TCTGA} & & &\
\text{s3 GATAT-T (score = -1)} & & & \\
\text{s3 GAT-ATT} & & & \\
\text{s4 G-TCAGC (score = -1)} & & & \\
\end{align*}
Greedy Approach: Example

s_2 and s_4 are closest; combine:

s_2 \hspace{0.5cm} GTCTGA
s_4 \hspace{0.5cm} GTCAGC \hspace{0.5cm} s_{2,4} \hspace{0.5cm} GTCT/aGa/c

(profile)

new set of 3 sequences:

S_1 \hspace{0.5cm} GATTCA
S_3 \hspace{0.5cm} GATATT
$S_{2,4}$ \hspace{0.5cm} GTCT/aGa/c

Repeat
Greedy Approach: Example

Repeat for $\binom{3}{2} = 3$ possible alignments

$s_1 : \text{GAT-TCA}$
$s_3 : \text{GATAT-T}$
$(\text{score} = 1 + 1 + 1 - 1 + 1 - 1 - 1 = 1)$

$s_1 : \text{GAT-TCA}$
$s_{2,4} : \text{G-TCtGa}$
$(\text{score} = 2 - 2 + 2 - 2 + 1 - 1 + 1 = 1)$

$s_3 : \text{GATAT-T}$
$s_{2,4} : \text{G-TCtGa}$
$(\text{score} = 2 - 2 + 2 - 2 + 1 - 1 - 1 = -1)$
Progressive Alignment

- *Progressive alignment* is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
 - Gaps in consensus string are permanent
 - Use profiles to compare sequences

- CLUSTAL
ClustalW (Clustal Omega)

- Popular multiple alignment tool commonly used today
- ‘W’ stands for ‘weighted’ (different parts of alignment are weighted differently).
- Three-step process
 1.) Construct pairwise alignments
 2.) Build Guide Tree
 3.) Progressive Alignment guided by the tree
Step 1: Pairwise Alignment

- Aligns each sequence against each other giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

<table>
<thead>
<tr>
<th></th>
<th>v₁</th>
<th>v₂</th>
<th>v₃</th>
<th>v₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>v₁</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v₂</td>
<td>.17</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v₃</td>
<td>.87</td>
<td>.28</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>v₄</td>
<td>.59</td>
<td>.33</td>
<td>.62</td>
<td>-</td>
</tr>
</tbody>
</table>

(.17 means 17 % identical)
Step 2: Guide Tree

- Create Guide Tree using the similarity matrix

 - ClustalW uses the neighbor-joining method (we will discuss this later in the course, in the section on clustering)

- Guide tree roughly reflects evolutionary relations
Step 2: Guide Tree (cont’d)

Calculate:

<table>
<thead>
<tr>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.17</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.87</td>
<td>.28</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>.59</td>
<td>.33</td>
<td>.62</td>
<td>-</td>
</tr>
</tbody>
</table>

Calculate:

- $v_{1,3} = \text{alignment} (v_1, v_3)$
- $v_{1,3,4} = \text{alignment}((v_{1,3}), v_4)$
- $v_{1,2,3,4} = \text{alignment}((v_{1,3,4}), v_2)$
Step 3: Progressive Alignment

- Start by aligning the two most similar sequences
- Following the guide tree, add in the next sequences, aligning to the existing alignment
- Insert gaps as necessary

Dots and stars show how well-conserved a column is.