Neighbor Joining Algorithm:

Given: An $n \times n$ distance matrix D

Find: Unrooted Phylogenetic T with branch lengths. If D is additive, then $d_T(i, j) = D[i, j]$ for all $1 \leq i, j \leq n$. Otherwise, $d_T(i, j) \approx D[i, j]$

Terminology Given $n \times n$ distance matrix D:
- Define $u_i = \sum_{k=1}^{n} D[C_i, C_k]$
- Define $S_D(C_i, C_j) = (n-2)D[C_i, C_j] - u_i - u_j$

Algorithm Sketch

Initialization:
- Form n clusters $\{C_1, C_2, ..., C_n\}$, one for each species.
- Define tree T to be the set of leaf nodes, one per species.

Iteration: (D is currently $m \times m$)
- Pick $C_x, C_y = \arg\min_{i,j} S_D(C_i, C_j)$
- Merge C_x and C_y into new node (C_x, C_y) in T.
- Assign length $\frac{1}{2}(D[C_x, C_y] + \frac{1}{(m-2)}(u_x - u_y))$ to edge $(C_x, (C_x, C_y))$
- Assign length $\frac{1}{2}(D[C_x, C_y] + \frac{1}{(m-2)}(u_y - u_x))$ to edge $(C_y, (C_x, C_y))$
- Remove rows and columns from D corresponding to C_x and C_y.
- Add row and column to D for new vertex (C_x, C_y).
- Set $D((C_x, C_y), C_z) = \frac{1}{2}(D[C_x, C_z] + D[C_y, C_z] - D[C_x, C_y])$ for all remaining clusters C_z.

Termination:
- When two clusters C_x and C_y remain, join them with an edge of length $D[C_x, C_y]$
Practice: Use the Neighbor Joining Algorithm to build the tree for the following distance matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>