Suppose our input data to a map-reduce operation consists of integer values (the keys are not important). The map function takes an integer i and produces the list of pairs (p, i) such that p is a prime divisor of i. For example, $\text{map}(12) = [(2, 12), (3, 12)]$. The reduce function is addition. That is, $\text{reduce}(p, [i, i, ..., i]) = (p, i + i + ... + i)$. Compute the output, if the input is the set of integers 15, 21, 24, 30, 49. Then, identify, in the list below, one of the pairs in the output.

- a. $(7, 70)$
- b. $(5, 49)$
- c. $(2, 47)$
- d. $(6, 54)$
Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]

Citation networks and Maps of science
[Börner et al., 2012]

Seven Bridges of Königsberg
Euler, 1735
Return to the starting point by traveling each link of the graph once and only once.
Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

Web as a Directed Graph

- How to organize the Web?
 - First try: Human curated Web directories
 - Yahoo, DMOZ, LookSmart
 - Second try: Web Search
 - Information Retrieval investigates:
 - Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - But: Web is huge, full of untrusted documents, random things, web spam, etc.
Web Search: 2 Challenges

2 challenges of web search:
- (1) Web contains many sources of information
 Who to “trust”?
 - Trick: Trustworthy pages may point to each other!
- (2) What is the “best” answer to query “newspaper”?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

- All web pages are not equally “important”
 www.joe-schmoe.com vs. www.stanford.edu
- There is large diversity in the web-graph node connectivity.
 Let’s rank the pages by the link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importances of nodes in a graph:
 - Page Rank
 - Topic-Specific (Personalized) Page Rank
 - Web Spam Detection Algorithms

PageRank:
The “Flow” Formulation
Links as Votes

- **Idea: Links as votes**
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- **Think of in-links as votes:**
 - www.stanford.edu has 23,400 in-links
 - www.joe-schmoe.com has 1 in-link
- **Are all in-links equal?**
 - Links from important pages count more
 - Recursive question!

Simple Recursive Formulation

- Each link’s vote is proportional to the **importance** of its source page
- If page j with importance r_j has n out-links, each link gets r_j/n votes
- Page j’s own importance is the sum of the votes on its in-links

$$r_j = \frac{r_i}{3} + \frac{r_k}{4}$$

Example: PageRank Scores

- **A “vote” from an important page is worth more**
- **A page is important if it is pointed to by other important pages**
- **Define a “rank” r_j for page j**

$$r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$$

d_i ... out-degree of node i
Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
- No unique solution
- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:
 \[r_y + r_a + r_m = 1 \]
 Solution: \[r_y = \frac{2}{5}, \ r_a = \frac{2}{5}, \ r_m = \frac{1}{5} \]
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

PageRank: Matrix Formulation

- Stochastic adjacency matrix \(M \)
 - Let page \(i \) has \(d_i \) out-links
 - If \(i \rightarrow j \), then \(M_{ji} = \frac{1}{d_i} \) else \(M_{ji} = 0 \)
 - \(M \) is a column stochastic matrix
 * Columns sum to 1
- Rank vector \(r \): vector with an entry per page
 - \(r_i \) is the importance score of page \(i \)
 - \(\sum_i r_i = 1 \)
- The flow equations can be written
 \[r = M \cdot r \]

Example

- Remember the flow equation: \[r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} \]
- Flow equation in the matrix form
 \[M \cdot r = r \]
 Suppose page \(i \) links to 3 pages, including \(j \)

\[
\begin{array}{c c c}
\hline
i & j & r_j \\
\hline
1/3 & 1 & r_i \\
\hline
\end{array}
\]

\[M \cdot r = r \]

Eigenvector Formulation

- The flow equations can be written
 \[r = M \cdot r \]
 So the rank vector \(r \) is an eigenvector of the stochastic web matrix \(M \)
 - In fact, its first or principal eigenvector, with corresponding eigenvalue \(1 \)
 * Largest eigenvalue of \(M \) is \(1 \) since \(M \) is column stochastic (with non-negative entries)
 * We know \(r \) is unit length and each column of \(M \) sums to one, so \(Mr \leq 1 \)
- We can now efficiently solve for \(r \)!
 - The method is called Power iteration

\[Ax = \lambda x \]
Example: Flow Equations & M

\[
\begin{array}{c|c|c|c}
\text{y} & \frac{1}{2} & \frac{1}{2} & 0 \\
\text{a} & \frac{1}{2} & 0 & 1 \\
\text{m} & 0 & \frac{1}{2} & 0 \\
\end{array}
\]

r = M \cdot r

\[
\begin{align*}
\text{ry} &= \text{ry}/2 + \text{ra}/2 \\
\text{ra} &= \text{ry}/2 + \text{rm} \\
\text{rm} &= \text{ra}/2
\end{align*}
\]

Power Iteration Method

- **Given a web graph with** \(n \) **nodes, where the nodes are pages and edges are hyperlinks**
- **Power iteration**: a simple iterative scheme
 - **Suppose there are** \(N \) **web pages**
 - **Initialize**: \(\text{r}^{(0)} = [1/N, \ldots, 1/N]^T \)
 - **Iterate**: \(\text{r}^{(t+1)} = \text{M} \cdot \text{r}^{(t)} \)
 - **Stop when** \(|\text{r}^{(t+1)} - \text{r}^{(t)}|_1 < \varepsilon \)

\[|\text{x}|_1 = \sum_{i=1}^N |\text{x}_i|\]

Example:

\[
\begin{align*}
\text{ry} &= 1/3 \\
\text{ra} &= 3/6 \\
\text{rm} &= 1/3
\end{align*}
\]

PageRank: How to solve?

Power Iteration:

- **Set** \(\text{r}_j = 1/N \)
- **1**: \(r'_j = \sum_{i \rightarrow j} \text{r}_i / d_i \)
- **2**: \(r' = r' \)
- **Goto 1**

Example:

\[
\begin{align*}
\text{ry} &= 1/3 \\
\text{ra} &= 3/6 \\
\text{rm} &= 3/12
\end{align*}
\]

PageRank: How to solve?

Power Iteration:

- **Set** \(\text{r}_j = 1/N \)
- **1**: \(r'_j = \sum_{i \rightarrow j} \text{r}_i / d_i \)
- **2**: \(r' = r' \)
- **Goto 1**

Example:

\[
\begin{align*}
\text{ry} &= 1/3 \\
\text{ra} &= 3/6 \\
\text{rm} &= 1/3
\end{align*}
\]
Random Walk Interpretation

- Imagine a random web surfer:
 - At any time t, surfer is on some page i
 - At time $t+1$, the surfer follows an out-link from i uniformly at random
 - Ends up on some page j linked from i
 - Process repeats indefinitely

- Let:
 - $p(t)$... vector whose ith coordinate is the prob. that the surfer is at page i at time t
 - So, $p(t)$ is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time $t+1$?
 - Follows a link uniformly at random
 - $p(t+1) = M \cdot p(t)$

- Suppose the random walk reaches a state
 - $p(t+1) = M \cdot p(t) = p(t)$
 - then $p(t)$ is **stationary distribution** of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

Existence and Uniqueness

- A central result from the theory of random walks (a.k.a. Markov processes):
 - For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time $t = 0$