COMP 465: Data Mining
More on PageRank

Slides Adapted From: www.mmds.org (Mining Massive Datasets)

PageRank: How to solve?

- **Power Iteration:**
 - Set \(r_j = 1/N \)
 - 1: \(r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} \)
 - 2: \(r = r' \)
 - Goto 1

- **Example:**
 - \(r_y = \frac{1}{3} \)
 - \(r_a = \frac{1}{3} \)
 - \(r_m = \frac{1}{3} \)

Random Walk Interpretation

- Imagine a random web surfer:
 - At any time \(t \), surfer is on some page \(i \)
 - At time \(t + 1 \), the surfer follows an out-link from \(i \) uniformly at random
 - Ends up on some page \(j \) linked from \(i \)
 - Process repeats indefinitely

- Let:
 - \(p(i) \) ... vector whose \(i^{th} \) coordinate is the prob. that the surfer is at page \(i \) at time \(t \)
 - So, \(p(t) \) is a probability distribution over pages

```
\[ r_j = \sum_{i \rightarrow j} \frac{r_i}{d_{out}(i)} \]
```
The Stationary Distribution

- Where is the surfer at time $t+1$?
 - Follows a link uniformly at random
 \[p(t + 1) = M \cdot p(t) \]
 - Suppose the random walk reaches a state
 \[p(t + 1) = M \cdot p(t) = p(t) \]
 then $p(t)$ is stationary distribution of a random walk
- Our original rank vector r satisfies
 \[r = M \cdot r \]
 - So, r is a stationary distribution for the random walk

PageRank: The Google Formulation

PageRank: Three Questions

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

\[r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i} \]
or equivalently \[r = Mr \]

Does this converge?

Example:
\[r_a = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}, \quad r_b = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \]

Iteration 0, 1, 2, ...
Problem: Spider Traps

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**
 - $r_y = \frac{1}{3}$, $2/6$, $3/12$, $5/24$, 0
 - $r_a = \frac{1}{3}$, $1/6$, $2/12$, $3/24$, 0
 - $r_m = \frac{1}{3}$, $3/6$, $7/12$, $16/24$, 1

 All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β, follow a link at random
 - With prob. $1-\beta$, jump to some random page
- Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps
Problem: Dead Ends

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**
 $r_y = \frac{1}{3}$, $r_a = \frac{1}{6}$, $r_m = \frac{1}{12}$

Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- **Teleports:** Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Why Teleports Solve the Problem?

- Why are dead-ends and spider traps a problem and why do teleports solve the problem?
 - **Spider-traps** are not a problem, but with traps PageRank scores are not what we want
 - **Solution:** Never get stuck in a spider trap by teleporting out of it in a finite number of steps
 - **Dead-ends** are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - **Solution:** Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- **Google’s solution that does it all:** At each step, random surfer has two options:
 - With probability β, follow a link at random
 - With probability $1 - \beta$, jump to some random page

- **PageRank equation** [Brin-Page, 98]
 \[
 r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}
 \]

This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.
The Google Matrix

- PageRank equation [Brin-Page, '98]
 \[r_j = \sum_{i \to j} \beta r_i / d_i + (1 - \beta) \frac{1}{N} \]

- The Google Matrix \(A \):
 \[A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N} \]

- We have a recursive problem: \(r = A \cdot r \)
 And the Power method still works!

- What is \(\beta \)?
 - In practice \(\beta = 0.8, 0.9 \) (make 5 steps on avg., jump)

Random Teleports (\(\beta = 0.8 \))

Computing Page Rank

- Key step is matrix-vector multiplication
 \[r^{\text{new}} = A \cdot r^{\text{old}} \]
 - Easy if we have enough main memory to hold \(A, r^{\text{old}}, r^{\text{new}} \)
- Say \(N = 1 \) billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix \(A \) has \(N^2 \) entries
 - \(10^{18} \) is a large number!

- How do we actually compute the PageRank?
Matrix Formulation

- Suppose there are N pages
- Consider page i, with d_i out-links
- We have $M_{ij} = 1/|d_j|$ when $i \rightarrow j$
- and $M_{ij} = 0$ otherwise
- The random teleport is equivalent to:
 - Adding a teleport link from i to every other page
 - Reducing the probability of each out-link from $1/|d_j|$ to $\beta/|d_j|$ where β is a teleport parameter
- Equivalent: Tax each page a fraction $(1-\beta)$ of its score and redistribute evenly

Rearranging the Equation

- $r = A \cdot r$, where $A_{ji} = \beta M_{ji} + \frac{1-\beta}{N}$
- $r_j = \sum_{i=1}^{N} A_{ji} \cdot r_i$
- $r_j = \sum_{i=1}^{N} \left[\beta M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i$
- $= \sum_{i=1}^{N} \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^{N} r_i$
- $= \sum_{i=1}^{N} \beta M_{ji} \cdot r_i + \frac{1-\beta}{N}$ since $\sum r_i = 1$
- So we get: $r = \beta M \cdot r + \frac{1-\beta}{N} \cdot \frac{1}{N}$

Sparse Matrix Formulation

- We just rearranged the PageRank equation $r = \beta M \cdot r + \frac{1-\beta}{N} \cdot \frac{1}{N}$
- M is a sparse matrix! (with no dead-ends)
- 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $r^{new} = \beta M \cdot r^{old}$
 - Add a constant value $(1-\beta)/N$ to each entry in r^{new}
 - Note if M contains dead-ends then $\sum r^{new}_j < 1$ and we also have to renormalize r^{new} so that it sums to 1

PageRank: The Complete Algorithm

- Input: Graph G and parameter β
- Directed graph G (can have spider traps and dead ends)
- Parameter β
- Output: PageRank vector r^{new}

- Set: $r^{old}_j = \frac{1}{N}$
- repeat until convergence: $\sum_j |r^{new}_j - r^{old}_j| > \varepsilon$
 - $\forall j: r^{new}_j = \sum_{i \rightarrow j} \beta \frac{r^{old}_i}{d_i}$
- $r^{new}_j = 0$ if in-degree of j is 0
- Now re-insert the leaked PageRank:
 - $\forall j: r^{new}_j = r^{new}_j + \frac{1-\beta}{N}$ where: $S = \sum r^{new}_j$
- $r^{old} = r^{new}$

Note: Here we assumed M has no dead-ends $[x]_N$ is a vector of length N with all entries x