Naïve Bayes Classifiers
Review

• Let event $D =$ data we have observed.
• Let events H_1, \ldots, H_k be events representing hypotheses we want to choose between.
• Use D to pick the "best" H.

• There are two "standard" ways to do this, depending on what information we have available.
Maximum likelihood hypothesis

• The maximum likelihood hypothesis (H_{ML}) is the hypothesis that maximizes the probability of the data given that hypothesis.

\[H_{ML} = \arg\max_{i} P(D \mid H_i) \]

• How to use it: compute $P(D \mid H_i)$ for each hypothesis and select the one with the greatest value.
Maximum a posteriori (MAP) hypothesis

• The MAP hypothesis is the hypothesis that maximizes the posterior probability:

\[
H^{\text{MAP}} = \arg\max_i P(H_i \mid D) = \arg\max_i \frac{P(D \mid H_i)P(H_i)}{P(D)} \propto \arg\max_i P(D \mid H_i)P(H_i)
\]

• The \(P(D \mid H_i) \) terms are now \textit{weighted} by the hypothesis prior probabilities.
Posterior probability

• If you need the actual posterior probability for some hypothesis H_0:

$$P(H_0 \mid D) = \frac{P(D \mid H_0)P(H_0)}{P(D)}$$

$$= \frac{P(D \mid H_0)P(H_0)}{\sum_i P(D, H_i)}$$

$$= \frac{P(D \mid H_0)P(H_0)}{\sum_i P(D \mid H_i)P(H_i)}$$
Combining evidence

• If we have multiple pieces of data/evidence (say 2), then we need to compute or estimate

\[P(D_1, D_2 \mid H_0) \]

which is often hard.

• Instead, we assume all pieces of evidence are conditionally independent given a hypothesis:

\[P(D_1, D_2 \mid H_0) = P(D_1 \mid H_0)P(D_2 \mid H_0) \]
Combining evidence

\[
P(H_0 \mid D_1, \ldots, D_m) = \frac{P(D_1, \ldots, D_m \mid H_0)P(H_0)}{P(D_1, \ldots, D_m)}
= \frac{\left[P(D_1 \mid H_0) \cdots P(D_m \mid H_0) \right] P(H_0)}{P(D_1, \ldots, D_m)}
= \left[\prod_{j=1}^{m} P(D_j \mid H_0) \right] P(H_0)
\]

where

\[
P(D_1 \ldots, D_m) = \sum_{i=1}^{k} \left(\left[\prod_{j=1}^{m} P(D_j \mid H_i) \right] P(H_i) \right)
\]
Classification

• Classification is the problem of identifying which of a set categories (called classes) a particular item belongs in.

• Lots of real-world problems are classification problems:
 – spam filtering (classes: spam/not-spam)
 – handwriting recognition & OCR (classes: one for each letter, number, or symbol)
 – text classification, image classification, music classification, etc.

• Almost any problem where you are assigning a label to items can be set up as a classification task.
Classification

• An algorithm that does classification is called a classifier. Classifiers take an item as input and output the class it thinks that item belongs to. That is, the classifier *predicts* a class for each item.

• Lots of classifiers are based on probabilities and statistical inference:
 – The classes become the hypotheses being tested.
 – The item being classified is turned into a collection of data called features. Useful features are attributes of the item that are strongly correlated with certain classes.
 – The classification algorithm is usually ML or MAP, depending on what data we have available.
Example: Spam classification

• New email arrives: is it spam or not spam?
• A useful set of features might be the presence or absence of various words in the email:
 – F1, \(\sim F1 \): "Kirlin" appears/does not appear
 – F2, \(\sim F2 \): "viagra" appears/does not appear
 – F3, \(\sim F3 \): "cash" appears/does not appear
• Let's say our new email contains "Kirlin" and "cash," but not "viagra."
• The features for this email are F1, \(\sim F2 \), and F3.
• Let's use MAP for classification.
Example: Spam classification

- Features: F1, ¬F2, F3.

\[H_{MAP} = \arg\max_i P(D \mid H_i)P(H_i) \]

\[H_{MAP} = \arg\max_{i \in \{\text{spam, not-spam}\}} P(F_1, \neg F_2, F_3 \mid H_i)P(H_i) \]

- But where do these probabilities come from?
Learning probabilities from data

• To use MAP, we need to calculate or estimate $P(H_i)$ and $P(F_1, \sim F_2, F_3 \mid H_i)$ for each i.

• In other words, we need to know:

 – $P($spam$)$

 – $P($not-spam$)$

 – $P(F_1, \sim F_2, F_3 \mid $spam$)$

 – $P(F_1, \sim F_2, F_3 \mid $not-spam$)$
Learning probabilities from data

• Let's assume we have access to a large number of old emails that are correctly labeled as spam/not-spam.
• How can we estimate $P(\text{spam})$?

$$P(\text{spam}) = \frac{\# \text{ of emails labeled as spam}}{\text{total } \# \text{ of emails}}$$
Learning probabilities from data

• Let's assume we have access to a large number of old emails that are correctly labeled as spam/not-spam.

• How can we estimate $P(F_1, \neg F_2, F_3 \mid \text{spam})$?

\[
P(F_1, \neg F_2, F_3 \mid \text{spam}) = \frac{\# \text{ of spam emails with those exact features}}{\text{total } \# \text{ of spam emails}}
\]

• Why is this probably going to be a very rough estimate?
Conditional independence to the rescue!

- It is unlikely that our set of old emails contains many messages with that exact set of features.
- Let's make an assumption that all of our features are conditionally independent of each other, given the hypothesis (spam/not-spam).

\[
P(F_1, \neg F_2, F_3 \mid \text{spam}) =
\]

\[
P(F_1 \mid \text{spam}) \cdot P(\neg F_2 \mid \text{spam}) \cdot P(F_3 \mid \text{spam})
\]

- These probabilities are easier to get good estimates for!
- A classifier that makes this assumption is called a Naïve Bayes classifier.
Learning probabilities from data

• So now we need to estimate \(P(F_1 \mid \text{spam}) \) instead of \(P(F_1, \sim F_2, F_3 \mid \text{spam}) \).

• Equivalently, how can we estimate the probability of seeing "Kirlin" in an email given that the email is spam?

\[
P(F_1 \mid \text{spam}) = \frac{\# \text{ of spam emails with the word Kirlin}}{\text{total \# of spam emails}}
\]
Another problem to handle...

• What if we see a word we've never encountered before? What happens to its probability estimate? (and why is this bad?)

\[
P(F_j \mid \text{spam}) = \frac{\text{# of spam emails with word } F_j}{\text{total # of spam emails}}
\]

\[
P(\text{spam} \mid F_1, \ldots, F_m) = \frac{\left[\prod_{j=1}^{m} P(F_j \mid \text{spam}) \right] P(\text{spam})}{P(F_1, \ldots, F_m)}
\]

• Probability of zero destroys the entire calculation!
Another problem to handle...

- Fix the estimates:

\[P(F_j \mid \text{spam}) = \frac{\# \text{ of spam emails with word } F_j + 1}{\text{total } \# \text{ of spam emails} + 2} \]

- This is called **smoothing**. Removes the possibility of a zero probability wiping out the entire calculation.

- "Simulates" two additional spam emails, one with every word, and one with no words.
Summary of Naïve Bayes

- Naïve Bayes classifies using MAP:

\[
H^{\text{MAP}} = \arg\max_i P(D \mid H_i)P(H_i)
\]

\[
= \arg\max_{i \in \{\text{spam, not-spam}\}} P(F_1, \ldots, F_m \mid H_i)P(H_i)
\]

\[
= \arg\max_{i \in \{\text{spam, not-spam}\}} \left[P(F_1 \mid H_i) \cdots P(F_m \mid H_i) \right] P(H_i)
\]

\[
= \arg\max_{i \in \{\text{spam, not-spam}\}} \left[\prod_{j=1}^{m} P(F_j \mid H_i) \right] P(H_i)
\]

- Compute this for spam and for not-spam; see which is bigger.
Summary of Naïve Bayes

• Estimating the **prior** for each hypothesis:

\[
P(H_i) = \frac{\text{# of emails labeled as } H_i}{\text{total # of emails}}
\]

• Estimating the probability of a feature given a class (aka **likelihood**):

\[
P(F_j | H_i) = \frac{\text{# of } H_i \text{ emails with word } F_j + 1}{\text{total # of } H_i \text{ emails} + 2}
\]