Markov Chains
Matrices to the rescue!

- Define a transition matrix T as normal.
- Define a sequence of observation matrices O_1 through O_t.
- Each O matrix is a diagonal matrix with the entries corresponding to that particular observation given each state.

$$f_{1:t+1} = \alpha f_{1:t} \cdot T \cdot O_{t+1}$$

where each f is a row vector containing the probability distribution at state t.
Forward algorithm

• Note that the forward algorithm only gives you the probability of X_t taking into account evidence at times 1 through t.

• In other words, say you calculate $P(X_1 \mid e_1)$ using the forward algorithm, then you calculate $P(X_2 \mid e_1, e_2)$.
 – Knowing e_2 changes your calculation of X_1.
 – That is, $P(X_1 \mid e_1) \neq P(X_1 \mid e_1, e_2)$
Backward algorithm

• Updates previous probabilities to take into account new evidence.
• Calculates $P(X_k \mid e_{1:t})$ for $k < t$
 – aka smoothing.
Backward matrices

• Main equations:

\[b_{k:t} = T \cdot O_k \cdot b_{k+1:t} \]

\[b_{t+1:t} = [1; \cdots ; 1] \quad \text{(column vec of 1s)} \]

\[P(X_k \mid e_{1:t}) = \alpha f_{1:k} \times b_{k+1:t} \]
Forward-backward algorithm

\[f_{1:0} = P(X_0) \]

\[f_{1:t+1} = \alpha f_{1:t} \cdot T \cdot O_{t+1} \]

Compute these forward from \(X_0 \) to wherever you want to stop.

\[b_{t+1:t} = [1; \cdots ; 1] \]

\[b_{k:t} = T \cdot O_k \cdot b_{k+1:t} \]

\[P(X_k \mid e_{1:t}) = \alpha f_{1:k} \times b_{k+1:t} \]

Compute these backwards from \(X_t \) to \(X_0 \).
Viterbi algorithm

- Computes most likely sequence of states (not a single state).
- Just like forward algorithm, but compute max instead of sum in algorithm.