Mathematics of rewards

• Assume our rewards are \(r_0, r_1, r_2, \ldots \)
• What expression represents our total rewards?
• How do we maximize this? Is this a good idea?
• Use discounting: at each time step, the reward is discounted by a factor of \(\gamma \) (called the discount rate).

• Future rewards from time \(t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots = \sum_{k=0}^{\infty} \gamma^k r_{t+k} \)
Markov Decision Processes

• An MDP has a set of states, \(S \), and a set of actions, \(A(s) \), for every state \(s \) in \(S \).
• An MDP encodes the probability of transitioning from state \(s \) to state \(s' \) on action \(a \): \(P(s' \mid s, a) \)
• RL also requires a reward function, usually denoted by \(R(s, a, s') = \) reward for being in state \(s \), taking action \(a \), and arriving in state \(s' \).
• An MDP is a Markov chain that allows for outside actions to influence the transitions.
• Grass gives a reward of 0.
• Monster gives a reward of -5.
• Pot of gold gives a reward of +10 (and ends game).
• Two actions are always available:
 – Action A: 50% chance of moving right 1 square, 50% chance of staying where you are.
 – Action B: 50% chance of moving right 2 squares, 50% chance of moving left 1 square.
 – Any movement that would take you off the board moves you as far in that direction as possible or keeps you where you are.
Value functions

- Almost all RL algorithms are based around learning *value functions*.

- A value function estimates the expected future reward from either a state, or a state-action pair.
 - $V^\pi(s)$: If we are in state s, and follow policy π, what is the total future reward we will see, on average?
 - $Q^\pi(s, a)$: If we are in state s, and take action a, then follow policy π, what is the total future reward we will see, on average?
Optimal policies

- There is always a "best" policy, called π^\star.
- The point of RL is to discover this policy by employing various algorithms.
- We denote the value functions corresponding to the optimal policy by $V^\star(s)$ and $Q^\star(s, a)$.
Bellman equations

• The V(s) and Q(s, a) functions, always satisfy certain recursive relationships for any MDP.
• These relationships, in the form of equations, are called Bellman equations.
Recursive relationship of V and Q:

$$V^*(s) = \max_a Q^*(s, a)$$

The average future rewards from a state s is equal to the average future rewards of whatever the best action is from that state.

$$Q^*(s, a) = \sum_{s'} P(s' | s, a) \left[R(s, a, s') + \gamma V^*(s') \right]$$

The average future rewards obtained by taking an action from a state is the weighted average of the average future rewards from the new state.
Bellman equations

\[V^*(s) = \max_a \sum_{s'} P(s' | s, a) \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[Q^*(s, a) = \sum_{s'} P(s' | s, a) \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right] \]

• Most RL algorithms use these equations in various ways to estimate \(V^* \) or \(Q^* \). An optimal policy can be derived from either \(V^* \) or \(Q^* \).
A main categorization of RL algorithms is whether or not they require a full model of the environment.

In other words, do we know \(P(s' \mid s, a) \) and \(R(s, a, s') \) for all combinations of \(s, a, s' \)?

- If we have this information (uncommon in the real world), we can compute \(V^* \) or \(Q^* \) directly.
- If we don't have this information, we can estimate \(V^* \) or \(Q^* \) from experience or simulations.
Value iteration

• **Value iteration** is an algorithm that computes an optimal policy, given a full model of the environment.

• Algorithm is derived directly from the Bellman equation (usually for V^*, but can use Q^* as well).

• Value iteration maintains a table of V values, one for each state. Each value $V[s]$ eventually converges to the true value $V^*(s)$.
Value iteration

Initialize V arbitrarily, e.g., $V[s] = 0$ for all states s.
Repeat
 for each state s:
 $V_{\text{new}}[s] \leftarrow \max_a \sum_{s'} P(s' \mid s, a) [R(s, a, s') + \gamma V[s']]$
 $V \leftarrow V_{\text{new}}$ (copy new table over old)
until the maximum difference in new and old values is smaller than some threshold
Output a policy π where $\pi(s) = \arg\max_a \sum_{s'} P(s' \mid s, a) [R(s, a, s') + \gamma V^*(s')]$
• Grass gives a reward of 0.
• Monster gives a reward of -5.
• Pot of gold gives a reward of +10 (and ends game).
• Two actions are always available:
 – Action A: 50% chance of moving right 1 square, 50% chance of staying where you are.
 – Action B: 50% chance of moving right 2 squares, 50% chance of moving left 1 square.
 – Any movement that would take you off the board moves you as far in that direction as possible or keeps you where you are.