Local Search
Toolbox so far

• Uninformed search
 – BFS, DFS, Iterative deepening DFS, Uniform cost search

• Heuristic search
 – A*
Review

• Search:
 – Use in environments that are static, discrete, 100% observable, deterministic.

• Things we care about:
 – Completeness, optimality, time/space complexity.
it's not the destination that matters, it's the journey.
New Idea: Local Search

• Can be used when path from start state to goal doesn't matter (only the goal matters).
• Process is slightly different than "normal" search:
 – Nodes/states are always complete solutions to the problem, not partial solutions.
 – One current node is maintained that has the best solution at the moment.
 – Actions generate new nodes with new complete solutions.
Local Search

• Benefits:
 – Use very little memory, often constant.
 – Can search very large state spaces quickly.

• Useful in optimization problems.
State-space landscape
State-space landscape

Graph that shows the values of the heuristic cost function or objective function in terms of the search space of possible states.
Hill climbing algorithm

• Loop that looks at all possible neighbors of the current state, and picks the one that increases the optimization function the most.

```plaintext
function HILL-CLIMBING(problem) returns a state that is a local maximum

current ← MAKE-NODE(problem.INITIAL-STATE)
loop do
    neighbor ← a highest-valued successor of current
    if neighbor.VALUE ≥ current.VALUE then return current.STATE
    current ← neighbor
```
Variants

• Stochastic hill climbing
• Random-restart hill climbing
Simulated annealing
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
 schedule, a mapping from time to "temperature"

current ← MAKE-NODE(problem.INITIAL-STATE)
for t = 1 to ∞ do
 T ← schedule(t)
 if T = 0 then return current
 next ← a randomly selected successor of current
 ΔE ← next.VALUE − current.VALUE
 if ΔE > 0 then current ← next
 else current ← next only with probability $e^{ΔE/T}$
Beam search

• Variation of hill climbing
 – Use k current states
 – Generate all of their successors
 – Take k best

• Variation: stochastic beam search
 – Adds in probabilistic idea from simulated annealing.
 – Same as above, but take k best successors based on probability.
Genetic algorithms

• Variation on stochastic beam search.
• Successor states are generated using two parent states, not one. (Crossover)
• Mutation: Randomly modifies a current state.
function Genetic-Algorithm\((\text{population}, \text{Fitness-Fn})\) returns an individual

inputs: \(\text{population}\), a set of individuals

\(\text{Fitness-Fn}\), a function that measures the fitness of an individual

repeat

\(\text{new-population} \leftarrow \text{empty set}\)

for \(i = 1\) **to** \(\text{Size}(\text{population})\) **do**

\(x \leftarrow \text{Random-Selection}(\text{population}, \text{Fitness-Fn})\)

\(y \leftarrow \text{Random-Selection}(\text{population}, \text{Fitness-Fn})\)

\(\text{child} \leftarrow \text{Reproduce}(x, y)\)

if (small random probability) **then** \(\text{child} \leftarrow \text{Mutate} (\text{child})\)

add \(\text{child}\) to \(\text{new-population}\)

\(\text{population} \leftarrow \text{new-population}\)

until some individual is fit enough, or enough time has elapsed

return the best individual in \(\text{population}\), according to \(\text{Fitness-Fn}\)