
10/9/2017

1

COMP 141

Input Validation Loops

1

Announcements

• Program 5 has been assigned

– Due Thursday, October 19th by 11:55pm on Moodle

2

3

Sentinels

• Sentinel: special value that marks the end of a 
sequence of items

– When program reaches a sentinel, it knows that the end of 
the sequence of items was reached, and the loop 
terminates

– Must be distinctive enough so as not to be mistaken for a 
regular value in the sequence

– Example: when reading an input file, empty line can be 
used as a sentinel

4

Using a Sentinel

For the following input, what is the value of temp?

4 7 5 9 1 -1



10/9/2017

2

5

Input Validation Loops

• Computer cannot tell the difference between good 
data and bad data

– If user provides bad input, program will produce bad 
output

– GIGO: garbage in, garbage out

– It is important to design your program such that bad input 
is never accepted

6

Input Validation Loops

• Input validation: inspecting input before it is 
processed by the program

– If input is invalid, prompt user to enter correct data

– Commonly accomplished using a while loop which 
repeats as long as the input is bad
• If input is bad, display error message and receive another set of 

data

• If input is good, continue to process the input

7

Input Validation Loops (cont’d.)

8

The following code will ask for a test score and 
check to see if it’s a valid score. If not, it will re-
prompt the user to enter the score.



10/9/2017

3

9

You can also do this with string inputs. (We will 
learn more useful ways to compare strings 
(lowercase to lowercase) later this semester.)

Running Total with Input Validation

• Write a loop that adds up the user inputted 
numbers. Assume the user will enter a 0 to 
signal they are done entering numbers.

• Calculate the average of the numbers.

• Add input validation so that user can only 
enter numbers between 0 and 100.

11

Practice (x2)

1. Write a program that prompts the user to enter a number 
between 50 and 100. If they don’t follow instructions and enter a 
number outside that range, re-prompt them. Continue to re-
prompt them to enter a number until the number they enter is 
between 50 and 100. Print out their legal input.

Note: Test your code by inputting values outside the range (at 
least 2) to make sure it’s working properly.

2. Write a program that starts off asking the user how much 
money they have in their bank account. Next, add a menu to let 
the user add money, subtract money, or quit the ATM program. 
Let the user keep using the ATM as long as they want (until they 
choose to quit). Prevent the user from withdrawing more money 
than they have in their account. Use input validation to prevent 
the user from typing in a negative amount of money.


