
10/30/2017

1

COMP 141

Strings II

1 2

Announcements

Reminders:

Program 6 - due 11/2

city = ‘Boston’

index = 0

while index < len(city):

print(city[index])

index += 1

3

Using len function

city = ‘Boston’

for index in range(0, len(city)):

print(city[index])

Prints 1 letter of city on each line

Equivalent Code

4

Accessing Characters Review

Strings are stored character by character.
Each character in a string is numbered by its position:

The numbers shown here above the characters are called indices
(singular: index) or positions.

0 1 2 3 4 5 6 7

“C” “o” “m” “p” “u” “t” “e” “r”

10/30/2017

2

5

Negative Indices

Negative indexing can be used.
Particularly useful for getting characters near the end of a string.

0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

“C” “o” “m” “p” “u” “t” “e” “r”

s[2] is the same as s[-6] both refer to “m”

To find last letter in string use:
s[-1]

6

String Indices

• Two ways to use square brackets

– 1 number inside -> gives you 1 character of a string
• s[0] gives you the first character in s

• If s = “Computer”, s[0] gives you ‘C’

– 2 numbers inside (separated by a colon) -> gives you a
substring or string slice

7

String Slicing

• Slice: span of items taken from a sequence, known as
substring

– Slicing format: string[start : end]

• Expression will return a string containing a copy of the
characters from start up to, but not including, end

• If start not specified, 0 is used for start index

• If end not specified, len(string) is used for end
index

– Slicing expressions can include a step value and negative
indexes relative to end of string

8

String Slicing

s[a:b] gives you a substring of s starting from index a and
ending at index b-1.

s[0:1] -> “C” just like s[0]

s[0:2] -> “Co”

s[0:7] -> “Compute”

s[3:6] -> “put”

s[0:8] -> “Computer”

0 1 2 3 4 5 6 7

“C” “o” “m” “p” “u” “t” “e” “r”

10/30/2017

3

9

Indices Don’t have to be Literal
Numbers

Say we have this code:

s = input(“Type in a string: ")

x = int(len(s) / 2)

print s[0:x])

What does this print?

10

More Fun with Indices

• Examples using negative indices

• A negative index counts from the right side of the string, rather
than from the left

s = “Computer”

print(s[-1])

print(s[-3:len(s)])

print(s[1:-1])

#prints r

#prints ter

#prints ompute

11

More Fun with Indices

• Slices don’t need both left and right indices

• Missing left -> use 0 [far left of string]

• Missing right -> use len(s) [far right of string]

s = “Computer”

print(s[1:])

print(s[:5])

print(s[-2:])

#prints omputer

#prints Compu

#prints er

12

Practice
• Write a function called total_seconds that takes one string argument.

This argument will be a string of the form "M:SS" where M is a number of
minutes (a single digit) and SS is a number of seconds (2 digits). This
function should calculate the total number of seconds in this amount of
time and return it as an integer. (Hint: Use string slicing/indices)

• Write a function called count_digits that returns the number of digits
in a string.

– count_digits(“abc123def5”) returns 4

• Write a function called sum_digits that returns the sum of all the digits in
a string.

– sum_digits(“abc123def5”) returns 11

(because 1 + 2 + 3 + 5 = 11)

10/30/2017

4

13

String Concatenation

• Combines two strings into a new, longer string

• Uses the same plus sign as addition

s1 = “CS141”

s2 = “rocks!”

bigstring = s1 + s2

print(bigstring) #prints CS141rocks!

14

String Concatenation

• Unlike print(), string concatenation does not put spaces
between your strings.

s1 = “CS141”

s2 = “rocks!”

bigstring = s1 + “ “ + s2

print(bigstring) #prints CS141 rocks!

15

Sample Problem

• All professor email addresses at Rhodes are constructed from
the professor’s last name, followed by the first initial of their
first name.

• We want to design a function that take’s a prof’s first and last
name and returns their email address.

16

Sample Problem Solution

10/30/2017

5

17

The Repetition Operator

• Repetition operator: makes multiple copies of a string and
joins them together

– The * symbol is a repetition operator when applied to a
string and an integer

• String is left operand; number is right

– General format: string_to_copy * n

– Variable references a new string which contains multiple
copies of the original string

s = "a"

s2 = s * 10

print(s2) #Output is aaaaaaaaaa

18

Other String Methods

• Programs commonly need to search for substrings

• Several methods to accomplish this:

– endswith(substring): checks if the string ends with
substring

• Returns True or False

– startswith(substring): checks if the string starts
with substring

• Returns True or False

19

• Several methods to accomplish this (cont’d):

– find(substring): searches for substring within
the string

• Returns lowest index of the substring, or if the
substring is not contained in the string, returns -1

– replace(substring, new_string):

• Returns a copy of the string where every occurrence of
substring is replaced with new_string

More String Methods

20

Using the find method

Output:
lastname_firstname_prg6.py

10/30/2017

6

21

String Methods

22

Testing, Searching, and Manipulating
Strings

• You can use the in operator to determine whether one
string is contained in another string

– General format: string1 in string2

• string1 and string2 can be string literals or
variables referencing strings

• Similarly you can use the not in operator to determine
whether one string is not contained in another string

23

Practice
• Write a function that returns a Rhodes student email address. (Assume this email

address is for a new student). Your function will need to take in 4 arguments: first
name, last name, middle name and class year.

• Write a function called reverse that takes a string argument and returns the string
argument with all characters in the reverse order.

– reverse(“Welsh”) returns “hsleW”

• Write a function called filter_digits that returns only the digits from a string.

– filter_digits("abc123def5") returns "1235"

• Write a function called count_unique that counts the number of unique
characters in a string.

– count_unique("abracadabra") returns 5.

• Write a function called count_dups that counts the number of back-to-back
duplicated characters in a string.

– count_dups("balloon") returns 2

