11/1/2017

[
Announcements

Guest Lecture
Bill Berghel

M.S., Georgia Tech
COM P 141 B.S., Washington & Lee

Retired data scientist with FedEx

Lists

Slides source:
November 1, 2017 Catie Welsh’s Fall 2016-2017 Lecture 25 slides for COMP141

Other Announcements

Introduction to Lists Introduction to Lists

List: an object that contains multiple data items Alist of integers:
— Element: An item in a list even_numbers = [2, 4, 6, 8, 10]
- Format: list = [item1, item2, etc.]
— Can hold items of different types Alist of strings:

Name=["'Emma', 'Sophia', 'Isabella‘', 'Emily']
print function can be used to display an entire list
A list holding different types:

1list() function can convert certain types of objects to lists fastfood = ['egg mcmuffin', 290, 2.79]

11/1/2017

I ——
Example Using Lists Why Use Lists?
def main():

Lists exist so that programmers can store multiple related
Create a list with some items. variables together_

food = [‘burger', 'fries', 'drink']

#pisplay the list.

sg::g;x;; are the items in the food list.’) Useful when we don't know ahead of time how many items
)) we are going to store.
#call the main function))) .
main() — Lists solve this problem because a single list can hold

m from zero to practically any number of items in it.

Here are the items in the food list.
['burger®, 'fries', 'drink']

e —
Basic List Operations Basic List Operations
Lists are created using square brackets around items
(elements) separated by commas. string_var = "abc123" list_var = [item1, item2, ...]
mylist - [1) 2, 3] string_var="" list_var=[]
len("abc123") len([3, 5, 7,9])
numbers = ['9 -1, 4.77, 3. 14] len(string_var) len(list_var)
fedexpsp = ['people', 'service', 'profit'] string_var|p] list_var{p]
string_var[p:q] list_var[p:q]
. . S - . . . str3 =strl + str2 list3 = list1 + list2
Lists are accessed using indices/positions just like strings. 5tr3 = "abe" 4 "def" Jist3 = [1, 2, 3] + [4, 5, 6]
"i"in "team” -> False 7in[2, 4, 6, 8] -> False
Most — but not all — string functions also exist for lists.

One Important Difference

Strings are immutable .
— You can't change a string without making a copy of it.
s = 'abc
s[@] = 'A' # definitely not legall!
s = 'A" + s[1:] # legal

Lists are mutable.
— You can change lists in-place without explicit copying.
L =1[2, 4, 6, 8, 10]
L[@] = 15 # legal
L.append(26) # legal

11/1/2017

Compare Immutable and Mutable

How can we switch the first and last letter in a string?

How can we switch the first and last items in a list?

Compare Immutable and Mutable

How can we switch the first and last letter in a string?
ltrs = "ABCDE"

print(*Original string is', lt
ltrs = ltrs [len(ltrs)-1] -wr ¢ 1trs [0]

print(‘New string is', ltrs)

How can we switch the first and last items in a list?

Compare Immutable and Mutable

How can we switch the first and last letter in a string?

Itrs - 'ABCDE'

print(‘original stringdis’, 1trs)

ltrs = ltrs [-1] |< 1trs [8]
print(‘new string is 5t

How can we switch the first and last items in a list?

11/1/2017

Compare Immutable and Mutable Compare Immutable and Mutable
How can we switch the first and last letter in a string? How can we switch the first and last letter in a string?
1trs "ABCDE" 1trs "ABCDE"

print(‘original string - ltrs) print(‘original stringdis’, 1trs)

1t = 1t 1 1t (=) 1t = Lt 1 1t -]

e cans St e gt

How can we switch the first and last items in a list? How can we switch the first and last items in a list?
fedexpsp = ['profit’, 'service', 'people’] fedexpsp - ["profit’, 'service', "people’]

print('Wrong list is',fedexpsp) We do not need print(‘Wrong list is',fedexpsp) We do not need

temp = fedexpsp[@] temp - fedexpsp[@]
fedexpsp[@] = fedexpsp[len(fedexpsp)-1] to look at the rest fedexpsp[0] = fedexpsp[-1] to look at the rest
fedexpsp| len(fedexpsp)-1] - temp of the list. fedexpsp[1] = temp of the list.

print{ Corrected list is’,fedexpsp) print('corrected list is’,fedexpsp)

Three Common Ways to Make a List Examples of Concatenation
Make a list that already has the elements in it: a = [1,2,3]
1st= [4, 7, 3, 8] b = [4,5,6]
c=a+b
Make a list of a certain length and prepopulate the same element in print(c) # prints [1, 2, 3, 4, 5, 6]
all positions: T

1st= [@] * 4 # makes the list [0,0,0,0]
— Use when you need a list of a certain length ahead of time.
— Note the repetition operator, similarly to strings.

mylist = ['a','b","'c"]

other = ['d','e","'f"]

print(mylist + other) #['a', 'b', 'c', 'd', 'e', '£']

Make an empty list:
Ist= []

— Common when you're going to put things in the list coming from
the user or a file.

Simple List Problems

How would we write a function to convert a number from 1-12
into the corresponding month of the year as a string?

def getmonth(month):

11/1/2017

Simple List Problems

How would we write a function to convert a number from 1-12

into the corresponding month of the year as a string?
def getmonth(menth):
Ist « ["Jan’, "Feb’, 'Mar’, "Apr’, ‘May', 'Jun']
Ist - lst + ["Jul’, "Aug’, 'Sep’, 'Oct’, 'Nov', 'Dec’]
print('Month',month, is’,1st[month-1])

getmonth(11)

Month 11 is Nov

Simple List Problems

What does this code do?

1stl = [2] * 3

1st2 = [4] * 2

1st3 = 1stl + 1st2

for x in range(@, len(1lst3), 2):
1st3[x] = -1

Simple List Problems

What does this code do?

lst1 - [2] * 3

Istz - [4] * 2

Ista - lst1 4+ lst2

for x in range(s, len(lst3), 2):
1st3[x] - -1

print('1st1 is',Ist1)

print('1st2 is',Ist2)

print('1st3 is',Ist3)

1stl is [2, 2, 2]
1st2 is [4, 4]
1st3 is [-1, 2, -1, 4, -1]

11/1/2017

Examples of List Slices Problem — Total of the Values in a List

Program 8-8 (total list.py)

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] # This program calculates the total of the values in a list.
def main():

numbers[2:] #[3, 4, 5, 6, 7, 8, 9, 10] o reates fif‘;, e

numbers(:-2] #[1, 2, 3, 4, 5, 6, 7, 8] # Create a variable to use as an accumulator.

numbers[1:8:2] #[2, 4, 6, 8] total - o

numbers[5::-1] #[6, 5, 4, 3, 2, 1] :of‘.\ll;\;::t;"rx,‘;:;:‘:l of the list elements.

numbers[::-1] #[18, 9, 8, 7, 6, 5, 4, 3, 2, 1] total +- value

Display the total of the list elements.
print('The total of the elements is', total)

Call the main function.
main()

The total of the elements is 30

Problem — Total of Sales Data Practice

The NUM_DAYS ((.Jrls\anl holds the number of days m
o e e L e sl dotes Get the file Nov1.py from my Box.com code directory. It has
X P . : .
def mainy: bay £ 1 the main function written for you and stubs for 2 other
Create a list to hold the sales for each day. poo 4 4 & functions that you will need to write.
sales = [@] * NUM_DAYS Day ¥ 4
:

Day #
Create a variable to hold an index. A

85 YOU entered:

index - o findAverage(numbers) — Will return the average of all
print(‘Enter the sales for each day.') 3000 the numbers in the list.
Get the sales for each day. fffﬂ
while index < NUM_DAYS: .
print(‘Day #', index + 1, "t °, sep = **, end - ') countNumbers(numbers, average) - Will return 2
sales[index]-float(input()) .
index +- 1 values; it counts the number of above average and
Display the values entered. below average numbers in a list.

print(‘Here are the values you entered:')
for value in sales:
print(value)

Call the main function.
main()

