3/23/2018

Announcements

Reminders:
Program 6 - due Tuesday, March 27th

COMP 141

Strings Il

“Rhodes Callege

Practice From Last Time String Testing Methods

Table 9-1 Some string testi hods

Write a loop to count the number of capital YTV
Ietter A’S in a String, tsalnum()y Returns true if the string contains only alphabetic letters or digits and is at least

one character in length. Returns false otherwise.

Write a |00p to count ca pltal or |0Wercase A’S isalpha() Returns true if the string contains only alphabetic letters, and is at least one
° character in length. Returns false otherwise.
H H H H 1sdigit() Returns true if the string contains only numeric digits and is at least one character
Write a loop to print all the letters in a string e et e G
in reverse order islower() Returns true if all of the alphabetic letters in the string are lowercase, and the
string contains at least one alphabetic letter. Returns false otherwise.
erte a |00p tO prl nt eve ry Other Cha r‘aCter |n a isspace() Returns true if the string contains only whitespace characters, and is at least one

character in length. Returns false otherwise. (Whitespace characters are spaces,
H H H . newlines (\n), and tabs (\t).
string, starting with the first.)
isupper() Returns true if all of the alphabetic letters in the string are uppercase, and the
string contains at least one alphabetic letter. Returns false otherwise.

3/23/2018

Example using isupper()

This program counts the number of times
ter appears in a string.

the an uppercase leo

£ main():
Create a variable
The variable must

hold the count.

count = 0
¥ Get a stri r.
my_string = input('Enter a sentence: ')

he uppercase letters
my_string:
if ch.isupper():

count += 1

Print the result
print (count,

Call the main function.
main()

String Modification Methods

Table 9.2 M tion M
Method Description
Tower () Returns a copy of the string with all alphabetic letters converted to lowercase. Any
character that is already lowercase, or is not an alphabetic letter, is unchanged.
lstrip() Returns a copy of the string with all leading whitespace characters removed.

Leading whitespace characters are spaces, newlines (\n), and tabs (\t) that

appear at the beginning of the strir

istrip(char) The rgument is a string containing a character. Returns a copy of the string

with all instances of

ar that appear at the beginning of the string removed

rstrip() Returns a copy of the string with all trailing whitespace characters removed
Trailing whitespace characters arc spaces, newlines (\n), and tabs (\t) that
appear at the end of the string.

rstrip(char) The char argumentis a string containing a character. The method returns a copy of

:nar that appear at the end of the string removed.

the string with all instances of

strip() Returns a copy of the string with all lcading and trailing whitespace characters
removed.

strip(char) Returns a copy of the string with all instances of char that appear at the
beginning and the end of the string removed.

upper () Returns a copy of the string with all alphabetic letters converted to uppercase. Any

character that is already uppercase, or is not an alphabetic letteg,is unchanged.

Example

shape = input(“Enter shape: Sphere or Cube ”)

#Ensures that all letters in shape are lowercase
shape = shape.lower()

if shape == ‘sphere’ or shape == ‘cube’:
validShape = True

else:
validShape = False

Using len function

Prints 1 letter of city on each line

city = ‘Boston’

index = 0

while index < len(city):
print(city[index])
index += 1

Equivalent Code

city = ‘Boston’
for index in range (0, len(city)):

print(citylindex])

3/23/2018

Accessing Characters Review

Strings are stored character by character.
Each character in a string is numbered by its position:

0o 1 2 3 4 5 6 7

acr an ‘ g ‘ an ‘

u

o o “o

The numbers shown here above the characters are called indices
(singular: index) or positions.

Negative Indices

Negative indexing can be used.
Particularly useful for getting characters near the end of a string.

0 1 2 3 4 5 6 7
-8 7 -6 5 -4 3 2 El
‘ “c” “0” “m” "p” “u” “t” “e” ‘ “r” ‘

s[2] is the same as s[-6] both refer to “m”

To find last letter in string use:
s[-1]

String Indices

« Two ways to use square brackets
— 1 number inside -> gives you 1 character of a string
« s[0] gives you the first character in s
« If s = “Computer”, s[0] gives you ‘C’

— 2 numbers inside (separated by a colon) -> gives you a
substring or string slice

String Slicing

« Slice: span of items taken from a sequence, known as
substring
— Slicing format: string[start : end]

* Expression will return a string containing a copy of the
characters from start up to, but not including, end

« If start not specified, 0 is used for start index

« If end not specified, len (string) is used for end
index

— Slicing expressions can include a step value and negative
indexes relative to end of string

3/23/2018

String Slicing

s[a:b] gives you a substring of s starting from index a and
ending at index b-1.

[0 | 1| 213 |4 | 5 |6 | 7]
“c” “o” “m” “p” “u” “t” ‘e “r”

s[0:1] -> “C” just like s[0@]
s[0:2] -> “Co”

s[0:7] -> “Compute”

s[3:6] -> “put”

s[0:8] -> “Computer”

Indices Don’t have to be Literal

Numbers

Say we have this code:

s = input(“Type in a string: ")
x = int(len(s) / 2)

print s[0:x])

What does this print?

More Fun with Indices

« Examples using negative indices
* A negative index counts from the right side of the string, rather

than from the left
s = “Computer”
print(s[-11) #prints r
print(s[-3:len(s)]) #prints ter

print(s[l:-1]) #prints ompute

More Fun with Indices

« Slices don’t need both left and right indices
¢ Missing left -> use 0 [far left of string]
¢ Missing right -> use len(s) [far right of string]

s = “Computer”

print(s[l:]) #prints omputer
print(s[:5]) #prints Compu
print (s[-2:1) #prints er

Practice

* Write a function called total_seconds that takes one string argument.
This argument will be a string of the form "M:SS" where M is a number of
minutes (a single digit) and SS is a number of seconds (2 digits). This
function should calculate the total number of seconds in this amount of
time and return it as an integer. (Hint: Use string slicing/indices)

* Write a function called count_digits that returns the number of digits
in a string.

— count_digits(“abc123def5”) returns 4

* Write a function called sum_digits that returns the sum of all the digits in
a string.

— sum_digits(“abc123def5”) returns 11
(because 1 + 2 + 3 + 5 = 11)

3/23/2018

