
3/28/2018

1

COMP 141

Lists I

1 2

Announcements

Reminders:

Midterm 2 on Wednesday, April 4th.

3

Practice from Last Time

• Solutions in Box.com folder – string3Practice.py

4

Introduction to Lists

• List: an object that contains multiple data items

– Element: An item in a list

– Format: list = [item1, item2, etc.]

– Can hold items of different types

• print function can be used to display an entire list

• list() function can convert certain types of objects to lists

3/28/2018

2

5

Introduction to Lists

A list of integers
even_numbers = [2, 4, 6, 8, 10]

A list of strings:
names = [‘Molly’, ‘Steven’, ‘Will’, ‘Alicia’]

A list holding different types:
info = [‘Alicia’, 27, 1550.87]

6

Example Using Lists

Why use lists?

• Lists exist so programmers can store multiple
related variables together.

• Useful when we don't know ahead of time
how many items we are going to store.

– Lists solve this problem because a single list can
hold from zero to practically any number of items
in it.

Basic list operations

• Lists are created using square brackets around items
separated by commas.

mylist = [1, 2, 3]
numbers = [-9.1, 4.77, 3.14]
fred = ["happy", "fun", "joy"]

• Lists are accessed using indices/positions just like
strings.

• Most (but not all) string functions also exist for lists.

3/28/2018

3

10

One important difference

Strings are immutable
• You can't change a string without making a copy of it.

s = "abc"
s[0] = "A" # illegal!
s = "A" + s[1:] # legal

Lists are mutable
• Can be changed "in-place" (without explicit copying)

L = [2, 4, 6, 8, 10]
L[0] = 15 # legal
L.append(26) # legal

11

Compare Immutable and Mutable

• How can we switch the first and last letter in
a string?

• How can we switch the first and last items in
a list?

Three common ways to make a list

• Make a list that already has stuff in it:
lst = [4, 7, 3, 8]

• Make a list of a certain length that has the same element in
all positions:
lst = [0] * 4 #makes the list [0,0,0,0]
– Common when you need a list of a certain length ahead of time.
– Uses the repetition operator, similarly to strings

• Make an empty list:
lst = []
– Common when you're going to put things in the list coming

from the user or a file.

3/28/2018

4

Simple list problems

• How would we write a function to convert a
number from 1-12 into the corresponding
month of the year as a string?

def getmonth(month):

14

Examples of Concatenation

a = [1,2,3]

b = [4,5,6]

c = a + b

print(c) # prints [1, 2, 3, 4, 5, 6]

mylist = ['a','b','c']

other = ['d','e','f']

print(mylist + other) #['a', 'b', 'c', 'd', 'e', 'f']

Simple list problems

• What does this code do?

lst = [2] * 3

lst2 = [4] * 2

lst3 = lst + lst2
for x in range(0, len(lst3), 2):

lst3[x] = -1

16

Examples of List Slices

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

numbers[2:]

numbers[:-2]

numbers[1:8:2]

numbers[5::-1]

numbers[::-1]

#[3, 4, 5, 6, 7, 8, 9, 10]

#[1, 2, 3, 4, 5, 6, 7, 8]

#[2, 4, 6, 8]

#[6, 5, 4, 3, 2, 1]

#[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

3/28/2018

5

17

Can iterate by item in the list

18

Using the repetition operator
to initialize list

19

Class Practice

Get the file March28.py from my Box.com code directory. It has
the main function written for you and stubs for 2 other functions
that you will need to write.

findAverage(numbers) – will return the average of all the
numbers in the list

countNumbers(numbers, average) - will return 2 values; it counts
the number of above average and below average numbers in a
list

20

Finding Items in Lists with the in
Operator

• You can use the in operator to determine whether an item is
contained in a list

– General format: item in list

– Returns True if the item is in the list, or False if it is not
in the list

• Similarly you can use the not in operator to determine
whether an item is not in a list

3/28/2018

6

21

Example Using in Operator

22

List Methods and Useful Built-in
Functions

• append(item): used to add items to a list – item is
appended to the end of the existing list

• index(item): used to determine where an item is located

in a list

– Returns the index of the first element in the list containing
item

– Raises ValueError exception if item not in the list

find() doesn’t exist for lists

• list_var.index(item)

• Searches left to right, returns position where
found, but crashes if not found.

• Let’s build an algorithm that replicates find(),
but works for lists (returns -1 if not found).

24

Example Using Append

Output
[62, 57, 35, 27, 45, 44, 46, 68, 86, 27, 88, 33, 11, 61, 64, 45,
56, 9, 33, 32, 56, 63, 24, 26, 100, 95, 62, 10, 87, 58, 69, 54, 75,
41, 22, 93, 82, 16, 92, 49, 6, 71, 85, 59, 56, 22, 3, 50, 1, 20, 54,
18, 27, 78, 17, 7, 41, 83, 92, 38, 5, 64, 60, 92, 15, 26, 57, 39,
80, 41, 67, 56, 24, 77, 28, 90, 24, 72, 2, 46, 75, 53, 58, 47, 50,
18, 40, 65, 24, 58, 4, 58, 81, 40, 6, 77, 85, 86, 68, 63]

3/28/2018

7

25

List Methods and Useful Built-in
Functions (cont’d.)

• insert(index, item): used to insert item at position
index in the list

• sort(): used to sort the elements of the list in ascending
order

• remove(item): removes the first occurrence of item in
the list

• reverse(): reverses the order of the elements in the list

26

27 28

List Methods and Useful Built-in
Functions (cont’d.)

• del statement: removes an element from a specific index in
a list

– General format: del list[i]

• min and max functions: built-in functions that returns the
item that has the lowest or highest value in a sequence

– The sequence is passed as an argument

• sum function: built-in functions that returns the total of all
the values in a sequence

– The sequence is passed as an argument

3/28/2018

8

29

Example Using del, min, max,and
sum functions

Output
Before Deletion: [5, 4, 3, 2, 50, 40, 30]
After Deletion: [5, 4, 2, 50, 40, 30]
The lowest value is 2
The highest value is 50
The sum of values in my list is 131
The lowest value is a
The highest value is d 30

Practice
Write a program that randomly generates 20 integers between 1 and
50, and stores them in a list. Print out the lowest and the highest
numbers in your list, as well as the sum of all the numbers in the list.

Write a function that prints out sums of adjacent pairs of numbers in
the list (don't use sliding window; use indices)

Hint: You don’t need the sliding window technique; instead, use math
with list indices.

Write a function that takes a list and shifts all the elements in the list
one spot to the left, without using slices! (the left-most element
disappears)

Example: [1, 2, 3, 4, 5] turns into [2, 3, 4, 5, 5]

