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COMP 141

Lists I
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Announcements

Reminders:

Midterm 2 on Wednesday, April 4th. 
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Practice from Last Time

• Solutions in Box.com folder – string3Practice.py
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Introduction to Lists

• List: an object that contains multiple data items

– Element: An item in a list

– Format: list = [item1, item2, etc.]

– Can hold items of different types

• print function can be used to display an entire list

• list() function can convert certain types of objects to lists
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Introduction to Lists

A list of integers
even_numbers = [2, 4, 6, 8, 10]

A list of strings:
names = [‘Molly’, ‘Steven’, ‘Will’, ‘Alicia’] 

A list holding different types:
info = [‘Alicia’, 27, 1550.87]
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Example Using Lists

Why use lists?

• Lists exist so programmers can store multiple 
related variables together.

• Useful when we don't know ahead of time 
how many items we are going to store.

– Lists solve this problem because a single list can 
hold from zero to practically any number of items 
in it. 

Basic list operations

• Lists are created using square brackets around items 
separated by commas. 

mylist = [1, 2, 3] 
numbers = [-9.1, 4.77, 3.14] 
fred = ["happy", "fun", "joy"]

• Lists are accessed using indices/positions just like 
strings.

• Most (but not all) string functions also exist for lists.
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One important difference

Strings are immutable
• You can't change a string without making a copy of it. 

s = "abc" 
s[0] = "A" # illegal! 
s = "A" + s[1:] # legal 

Lists are mutable
• Can be changed "in-place" (without explicit copying) 

L = [2, 4, 6, 8, 10] 
L[0] = 15 # legal 
L.append(26) # legal 
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Compare Immutable and Mutable

• How can we switch the first and last letter in 
a string?

• How can we switch the first and last items in 
a list?

Three common ways to make a list

• Make a list that already has stuff in it: 
lst = [4, 7, 3, 8]

• Make a list of a certain length that has the same element in 
all positions: 
lst = [0] * 4 #makes the list [0,0,0,0] 
– Common when you need a list of a certain length ahead of time.
– Uses the repetition operator, similarly to strings

• Make an empty list: 
lst = [] 
– Common when you're going to put things in the list coming 

from the user or a file.
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Simple list problems

• How would we write a function to convert a 
number from 1-12 into the corresponding 
month of the year as a string? 

def getmonth(month):
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Examples of Concatenation

a = [1,2,3]

b = [4,5,6]

c = a + b

print(c) # prints [1, 2, 3, 4, 5, 6]

mylist = ['a','b','c']

other = ['d','e','f']

print(mylist + other)  #['a', 'b', 'c', 'd', 'e', 'f']

Simple list problems

• What does this code do?

lst = [2] * 3

lst2 = [4] * 2

lst3 = lst + lst2
for x in range(0, len(lst3), 2):

lst3[x] = -1
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Examples of List Slices

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

numbers[2: ] 

numbers[:-2] 

numbers[1:8:2] 

numbers[5::-1]

numbers[::-1]

#[3, 4, 5, 6, 7, 8, 9, 10]

#[1, 2, 3, 4, 5, 6, 7, 8]

#[2, 4, 6, 8]

#[6, 5, 4, 3, 2, 1]

#[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]



3/28/2018

5

17

Can iterate by item in the list
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Using the repetition operator 
to initialize list
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Class Practice

Get the file March28.py from my Box.com code directory. It has 
the main function written for you and stubs for 2 other functions 
that you will need to write.

findAverage(numbers) – will return the average of all the 
numbers in the list

countNumbers(numbers, average) - will return 2 values; it counts 
the number of above average and below average numbers in a 
list
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Finding Items in Lists with the in
Operator

• You can use the in operator to determine whether an item is 
contained in a list

– General format: item in list

– Returns True if the item is in the list, or False if it is not 
in the list

• Similarly you can use the not in operator to determine 
whether an item is not in a list
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Example Using in Operator
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List Methods and Useful Built-in 
Functions

• append(item): used to add items to a list – item is 
appended to the end of the existing list

• index(item): used to determine where an item is located 

in a list 

– Returns the index of the first element in the list containing 
item

– Raises ValueError exception if item not in the list

find() doesn’t exist for lists

• list_var.index(item)

• Searches left to right, returns position where 
found, but crashes if not found.

• Let’s build an algorithm that replicates find(), 
but works for lists (returns -1 if not found).
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Example Using Append

Output
[62, 57, 35, 27, 45, 44, 46, 68, 86, 27, 88, 33, 11, 61, 64, 45, 
56, 9, 33, 32, 56, 63, 24, 26, 100, 95, 62, 10, 87, 58, 69, 54, 75, 
41, 22, 93, 82, 16, 92, 49, 6, 71, 85, 59, 56, 22, 3, 50, 1, 20, 54, 
18, 27, 78, 17, 7, 41, 83, 92, 38, 5, 64, 60, 92, 15, 26, 57, 39, 
80, 41, 67, 56, 24, 77, 28, 90, 24, 72, 2, 46, 75, 53, 58, 47, 50, 
18, 40, 65, 24, 58, 4, 58, 81, 40, 6, 77, 85, 86, 68, 63]
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List Methods and Useful Built-in 
Functions (cont’d.)

• insert(index, item): used to insert item at position 
index in the list

• sort(): used to sort the elements of the list in ascending 
order

• remove(item): removes the first occurrence of item in 
the list

• reverse(): reverses the order of the elements in the list
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List Methods and Useful Built-in 
Functions (cont’d.)

• del statement: removes an element from a specific index in 
a list

– General format: del list[i]

• min and max functions: built-in functions that returns the 
item that has the lowest or highest value in a sequence

– The sequence is passed as an argument 

• sum function: built-in functions that returns the total of all 
the values in a sequence

– The sequence is passed as an argument 
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Example Using del, min, max,and
sum functions

Output
Before Deletion: [5, 4, 3, 2, 50, 40, 30]
After Deletion: [5, 4, 2, 50, 40, 30]
The lowest value is 2
The highest value is 50
The sum of values in my list is 131
The lowest value is a
The highest value is d 30

Practice
Write a program that randomly generates 20 integers between 1 and 
50, and stores them in a list. Print out the lowest and the highest
numbers in your list, as well as the sum of all the numbers in the list.

Write a function that prints out sums of adjacent pairs of numbers in 
the list (don't use sliding window; use indices)

Hint: You don’t need the sliding window technique; instead, use math 
with list indices.

Write a function that takes a list and shifts all the elements in the list 
one spot to the left, without using slices! (the left-most element 
disappears)

Example: [1, 2, 3, 4, 5] turns into [2, 3, 4, 5, 5]


