COMP 141

2-D Lists

Announcements

Reminder:

- Program 7 due on Sunday, April 15th

Two-Dimensional Lists

- Two-dimensional list: a list that contains other lists as its elements
 - Also known as nested list
 - Common to think of two-dimensional lists as having rows and columns
 - Useful for working with multiple sets of data
- To process data in a two-dimensional list need to use two indexes
- Typically use nested loops to process

Creating Two-Dimensional Lists

grid = [[1, 3, 5, 7], [2, 4, 6, 8], [5, 10, 15, 20]]

$grid[0] \rightarrow$	1	3	5	7
$grid[1] \rightarrow$	2	4	6	8
$grid[2] \rightarrow$	5	10	15	20

4

Accessing Individual Elements

 $\mathsf{grid} = [[1, 3, 5, 7], [2, 4, 6, 8], [5, 10, 15, 20]]$

$grid[0] \rightarrow$	1	3	5	7
	grid[0][0]	grid[0][1]	grid[0][2]	grid[0][3]
grid[1] \rightarrow	2	4	6	8
	grid[1][0]	grid[1][1]	grid[1][2]	grid[1][3]
grid[2] →	5	10	15	20
	grid[2][0]	grid[2][1]	grid[2][2]	grid[2][3]

5

Accessing Individual Elements

To access an individual element in a grid, use two positions: row first, then column.

	column 0	column 1	column 2	column 3
row 0	1	3	5	7
	grid[0][0]	grid[0][1]	grid[0][2]	grid[0][3]
row 1	2	4	6	8
	grid[1][0]	grid[1][1]	grid[1][2]	grid[1][3]
row 2	5	10	15	20
	grid[2][0]	grid[2][1]	grid[2][2]	grid[2][3]

6

Computing Number of Rows/Columns

grid = [[1, 3, 5, 7], [2, 4, 6, 8], [5, 10, 15, 20]]

- How do we calculate the number of rows in a 2-D list?
 len (grid) = # of rows
- How do we calculate the number of columns in a 2-D list?
 len (grid[rowid]) #use rowid = 0 if you're unsure which row

Assigning Values to a 2-D list

2

Printing Values in a 2-D List

Printing Values in a 2-D List

```
def main():
    values = [[4, 17, 34, 24],
        [46, 21, 54, 10],
        [54, 92, 10, 100]]

    for r in range(len(values)):
        for c in range(len(values[r])):
            print(format(values[r])(r, "4d"), end='')
        print()

#Call the main function
main()

Program Output
        4 17 34 24
        46 21 54 10
        54 92 10 100
```

Sum of Rows

 Write a function to print the sum of each row in your table.

Practice

Using April11.py from my Box.com directory, fill in the code for the 3 functions listed:

- sumAll returns the sum of all elements in the 2-D list
- sumColumns prints out the sums of each column
- maxRow compute the sum of each row and ${\bf return}$ the index and sum of the maximum row

12