COMP 141 if-elif-else, and/or Rhodes College

Announcements

- Reminders:
 - Program 1 due tomorrow night by 11:55pm

2

```
False score True score print/Your grade is F.)

False score print/Your grade is D.)

False score print/Your grade is D.)
```

```
# This program gets a numeric test score from the
# user and displays the corresponding letter grade.
# Constants for the grade thresholds
A_SCORE = 90
B_SCORE = 80
C_SCORE = 70
D_SCORE = 60

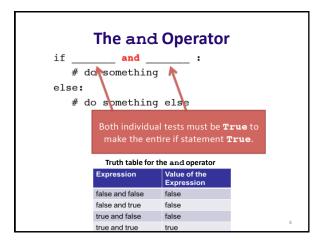
# Get a test score from the user.
score = int(input('Enter your test score: '))
# Determine the grade.
if score >= A_SCORE:
    print('Your grade is A.')
else:
    if score >= B_SCORE:
        print('Your grade is B.')
else:
        if score >= C_SCORE:
            print('Your grade is C.')
        else:
        if score >= D_SCORE:
            print('Your grade is D.')
        else:
        if score >= D_SCORE:
            print('Your grade is D.')
        else:
        if score >= D_SCORE:
            print('Your grade is D.')
        else:
            print('Your grade is F.')
```

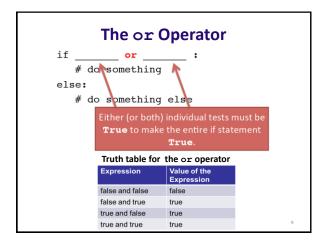
The if-elif-else Statement

- <u>if-elif-else statement</u>: special version of a decision structure
 - Makes logic of nested decision structures simpler to write
 - Can include multiple elif statements

```
# This program gets a numeric test score from the
# user and displays the corresponding letter grade.
# It is equivalent to the program in the previous slide

# Constants for the grade thresholds
A SCORE = 90
B_SCORE = 80
C_SCORE = 70
D_SCORE = 60


# Get a test score from the user.
score = int(input('Enter your test score: '))


# Determine the grade.
if score >= A_SCORE:
    print('Your grade is A.')
elif score >= B_SCORE:
    print('Your grade is B.')
elif score >= C_SCORE:
    print('Your grade is C.')
elif score >= D_SCORE:
    print('Your grade is D.')
else:
    print('Your grade is D.')
else:
    print('Your grade is F.')
```

Logical Operators

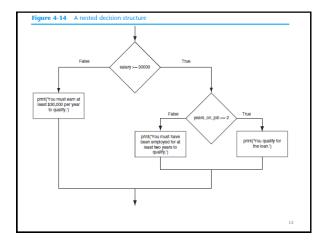
- <u>Logical operators</u>: operators that can be used to create complex Boolean expressions
 - and operator and or operator: binary operators, connect two Boolean expressions into a compound Boolean expression
 - not operator: unary operator, reverses the truth of its Boolean operand

Short-Circuit Evaluation

- Short circuit evaluation: deciding the value of a compound Boolean expression after evaluating only one sub expression
 - Performed by the or and and operators
 - For or operator: If left operand is true, compound expression is true. Otherwise, evaluate right operand
 - For and operator: If left operand is false, compound expression is false. Otherwise, evaluate right operand

10

The not Operator

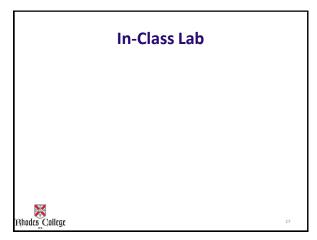

- Takes a Boolean expression as operand and reverses its logical value
 - Sometimes it may be necessary to place parentheses around an expression to clarify to what you are applying the not operator

Truth table for the not operator	
Expression	Value of the Expression
true	false
false	true

Checking Numeric Ranges with Logical Operators

- To determine whether a numeric value is within a specific range of values, use and
 - Example: x >= 10 and x <= 20
- To determine whether a numeric value is outside of a specific range of values, use or
 - **Example:** x < 10 or x > 20

12



Review Questions

- 1. Does an if statement **always** need to be followed by an else statement?
- 2. If you write an if-else statement, under what circumstances do the statements that appear after the else clause execute?
- 3. Assume the variables a = 2, b = 4, c = 6. What do the following statements evaluate to (true or false)?
 - a) a == 4 or b > 2
 - b) $6 \le c \text{ and } a > 3$
 - c) 1 != b and c != 3
 - d) a >= -1 or a <= b
 - e) not (a > 2)

16

