3/16/2015

Topic for today:

A first look at the control unit

Processor Control Unit

* Role of processor control unit
— Keeps operations synchronized

— Make sure that bits flow to the correct
components at the correct time

» How can we build this control unit?
— Hardwired control
— Microprogrammed control
» The result is the same — control signals!

Decoding opcodes

Recall that a single operation in our ISA
typically involves a sequence of several
register transfers. A single register transfer can
be executed by setting various control lines
either high or low.

Early in the history of computers, each
instruction involved just a single register
transfer, and the opcode indicated the
high/low settings.

Decoding opcodes

Questions:

How do you get the settings needed for a
register transfer from a single opcode?

How can you get a sequence of transfers from
a single opcode?

3/16/2015

Processor Control Unit
Bus
+ Remember the register transfer language + Each of MARIE’s Mg M
description for each MARIE instruction? registers and main [e ooy 1
— Table 4.7 memory have a unique L) .
— This is what the control unit manages. address along the 2
+ Each microoperation consists of a distinctive signal pattern datapath. s = i
that |s_|nterprete_d by thPT control unit and results in the « The addresses take the [+{_uer =
execution of an instruction h - 4 Lo\ A
) ; form of signals issued by t o ac A/
— RTL for the ADD instruction MAR « X th trol it - 7
MBR < M[MAR] e control unit. s
AC <« AC + MBR 5 o
How many signal lines does i
MARIE’s control unit need? H w) »
16.5it bus
6

Memory Buffer Register (MBR) Closeup

Bus

» Two sets of three signals LT .
each. L2 i omery .
+ {P2, P1, Po} 1 |
— controls reading from 2
memory or a register = *
* {P51 P4, P3} E » MBR | »
— controls writing to memory 4 P ‘:;-w' /

or a register.

16-bit bus

Ps Py Py Control Unit Pz PPy

3/16/2015

Memory Buffer Register (MBR) Closeup Processor Control Unit

) Control unit must manage ALU Control
more than just registers/ Signals
. main memory Ay Ay ALU Response
Dta Bys A What about the ALU 0 0 Do Nothing
e modes? 0 1 AC « AG + MBR
s 1 0 AG ¢ AG — MBR
rpading) ALU has only four operations | 1 1 AC « 0 (Clear)
A Add, subtract, clear, and
“do nothing”
. ALU controls: A;— A,

7/
LY
2]

s
s

Processor Control Unit ADD Instruction Control

ADD instruction RTL

How does the control unit The entire set of MARIE's
perform operations in control signals consists of: A MRR = X
sequence? # Register controls A MBR = M[MAR]
Longest instruction is JNS Py through P, A AT = AC + MBR
(look at RTL in Table 4.7) # ALU controls
through A After the add instruction is fetched, the address (X) is in the
A 7steps A through A, . .
2 Timin rightmost 12 bits of the IR

A Need a 3-bit counter wired E B

to a 3.8 decoder To through T, A IR datapath addressis 7
2 Counter reset for shorter A Counter reset C, # Raise signals P2, P1, and PO to read from IR

instructions

X is copied to the MAR

Output of decoder is “timing” A MAR datapath addressis 1
signals: Ty — T, # Raise signal P3 to write to MAR

3/16/2015

ADD Instruction Control

Complete signal sequence for ADD instruction
A P3P2P1POTO: MAR <X

A PAP3TIL: MBR = M[MAR]
A AOP5P1POT2: AC= AC+ MBR
A CrT3: [Reset counter]

These signals are ANDed with combinational logic
to bring about the desired machine behavior

ADD Instruction Control

Add instruction timing
diagram

Notice the concurrent signal
states during each machine
cycle: CO through C3.

P3 P2 P1 PO TO: MAR <+ X
P4 P3 T1l: MBR =< M[MAR]
AD P5 P1 PO T2: AC = AC + MBR
Cr T3: [Reset counter]

Processor Control Unit

This signal pattern needs to be produced regardless of
whether the processor uses hardwired or
microprogrammed control

Hardwired control unit
A Control unit is pure digital logic

Microprogrammed control unit
A Atiny program (called “microcode”) saved in ROM
Even more rudimentary than assembly language!

A Microinstructions are fetched, decoded, and executed in
the same manner as regular instructions

A Control unit works like a processor-in-miniature

15

Hardwired control

In a hardwired approach, the opcode is
decoded by a large set of digital circuits
(decoders, multiplexers, etc.) to send the
correct signals to the registers, ALU, and
internal CPU bus controller. (This is all just
Boolean algebra!)

Also, the clock signal is connected to a
counting circuit to ensure that actions happen
in the correct sequence.

Hardwired Control Unit

Cycle Counter l—

Instruction Register

I

Instruction Decoder

B!

ol

Input from clock

e—
—> Input from system bus
—> < } (such as interrupts)
— :
Control Matrix €~
(© Circult) |
[| input from status/
—>| 3 flag registers

I

(R S
Control Signals
(These signals go to registers,
the datapath, and the ALU.)

MARIE’s instruction decoder (partial)

Opcode Operand
Instruction | | | | | |

TRRRR

Load

Store

D Add

17 18
Note
Other IR
BRARE
= In a hardwired approach, any change in the
ISA requires a major redesign of the CPU
This is the circuitry.
hardwired
logic for
N MARIE’s
Py Hl Add = 0011
" instruction.
Py
Py
A,
A,
[of
.

19

3/16/2015

Consider the following
Discuss

Suppose you are designing a hardwired
control unit for a very small computerized
device. This system is so revolutionary that
the system designers have devised an entirely
new ISA for it. Because everything is so new,
you are contemplating including one or two
extra flip-flops and signal outputs in the cycle
counter. Why would you want to do this?
Why would you not want to do this? Discuss
the tradeoffs.

3/16/2015

