
3/23/2015 

1 

Topics for today: 

A little more on stacks 

Expanding opcodes 

Addressing modes 

2 

Instruction Formats 

• Design Decision: How will the CPU store data? 

• We have three choices: 

1. A stack architecture 

2. An accumulator architecture 

3. A general purpose register architecture. 

• In choosing one over the other, the tradeoffs are 

simplicity (and cost) of hardware design with 

execution speed and ease of use. 

3 

Instruction Formats 

• In a stack architecture, instructions and operands 

are implicitly taken from the stack. 

– A stack cannot be accessed randomly. 

• In an accumulator architecture, one operand of a 

binary operation is implicitly in the accumulator. 

– One operand is in memory, creating lots of bus traffic. 

• In a general purpose register (GPR) architecture, 

registers can be used instead of memory. 

– Faster than accumulator architecture. 

– Efficient implementation for compilers. 

– Results in longer instructions. 

4 

Instruction Formats 

• Most systems today are GPR systems. 

• There are three types: 

– Memory-memory where two or three operands may be in 

memory. 

– Register-memory where at least one operand must be in a 

register. 

– Load-store where no operands may be in memory. 

• The number of operands and the number of 

available registers has a direct affect on instruction 

length. 



3/23/2015 

2 

Recall: Stacks 

A stack is a data structure in which items 

may be accessed or added only at one 

end, called the top. 

 

Zero-address instructions implicitly use a 

stack. 

 

 

Expanding opcodes 

An instruction set in which the opcode is of 

variable length is said to have an expanding 

opcode. 

 

 

7 

Instruction Formats 

• A system has 16 registers and 4K of memory. 

• We need 4 bits to access one of the registers. We 

also need 12 bits for a memory address. 

• If the system is to have 16-bit instructions, we have 

two choices for our instructions: 

8 

Instruction Formats 

• If we allow the 

length of the 

opcode to vary, 

we could create a 

very rich 

instruction set: 



3/23/2015 

3 

9 

Example 

• Given 8-bit instructions, is it possible to allow the 

following to be encoded? 

– 3 instructions with two 3-bit operands. 

– 2 instructions with one 4-bit operand. 

– 4 instructions with one 3-bit operand. 

3  23  23 = 192 bits for the 3-bit operands 

2  24 = 32 bits for the 4-bit operands 

4  23 = 32 bits for the 3-bit operands. 

We need: 

Total: 256 bits. 

10 

Example (cont’d) 

• With a total of 256 bits required, we can exactly 

encode our instruction set in 8 bits! 

3  23  23 = 192 bits for the 3-bit operands 

2  24 = 32 bits for the 4-bit operands 

4  23 = 32 bits for the 3-bit operands 

We need: 

Total: 256 bits. 

11 

Using escape opcodes 


