3/23/2015

Topics for today:

A little more on stacks
Expanding opcodes
Addressing modes

Instruction Formats

Design Decision: How will the CPU store data?
We have three choices:

1. A stack architecture

2. An accumulator architecture

3. A general purpose register architecture.

In choosing one over the other, the tradeoffs are
simplicity (and cost) of hardware design with
execution speed and ease of use.

Instruction Formats

» In a stack architecture, instructions and operands
are implicitly taken from the stack.
— A stack cannot be accessed randomly.
* In an accumulator architecture, one operand of a
binary operation is implicitly in the accumulator.
— One operand is in memory, creating lots of bus traffic.
» In a general purpose register (GPR) architecture,
registers can be used instead of memory.
— Faster than accumulator architecture.
— Efficient implementation for compilers.
— Results in longer instructions.

Instruction Formats

Most systems today are GPR systems.

There are three types:
— Memory-memory where two or three operands may be in
memory.
— Register-memory where at least one operand must be in a
register.
— Load-store where no operands may be in memory.

The number of operands and the number of
available registers has a direct affect on instruction
length.

3/23/2015

Recall: Stacks Expanding opcodes

A stack is a data structure in which items An instruction set in which the opcode is of
may be accessed or added only at one variable length is said to have an expanding
end, called the top. opcode.

Zero-address instructions implicitly use a

stack.
Instruction Formats Instruction Formats
0000 R1 R2 R3
« A system has 16 registers and 4K of memory. * If we allow the e m m] 15 tree-addess cocos
« We need 4 bits to access one of the registers. We length of the 1111 - eseape opcode
also need 12 bits for a memory address. opcode to vary,

we could create a 1111 0000 Rl R2
very rich
instruction set:

« If the system is to have 16-bit instructions, we have
two choices for our instructions:

e] 14 two-address codes
1111 1101 R1 R2

1111 1110 - escape opcode

1111 1110 0000 R1

31 one-address codes

[TTTTTTITTTTIT 7T]
bnaniivnaivnastvnmet 1111 1111 1110 R1
Opcode Address 1 Address 2 Address 3

[(ITTTTTTITTTITITTTT]
.
Opcode Address

1111 1111 1111 - escape opcode

1111 1111 1111 0000

B] 16 zero-address codes
1111 1111 1111 1111
7 8

3/23/2015

Example

» Given 8-bit instructions, is it possible to allow the
following to be encoded?
— 3 instructions with two 3-bit operands.
— 2 instructions with one 4-bit operand.
— 4 instructions with one 3-bit operand.

We need:

3 x 23 x 23 = 192 bits for the 3-bit operands
2 x 2% = 32 bits for the 4-bit operands
4 x 23 = 32 bits for the 3-bit operands.

Total: 256 bits.

Example (cont’d)

» With a total of 256 bits required, we can exactly
encode our instruction set in 8 bits!

We need:

3 x 23 x 23 = 192 bits for the 3-bit operands
2 x 2% = 32 bits for the 4-bit operands
4 x 23 = 32 bits for the 3-bit operands

Total: 256 bits.

Using escape opcodes

00
i } 3 instructions with two

01 xxx xxx .
10 xxx xxx 3-bit operands

11 - escape opcode
1100 xxxx

1101 =xxxx

1110 - escape opcode
1111 - escape opcode

11100 xxx
11101 xxx 4 instructions with one
11110 xxx 3-bit operand

11111 =xxx

2 instructions with one
4-bit operand

11

