
4/15/2015

1

Topics for today:

More on interrupts

Alternative architecture:

The RISC philosophy

Recall: Interrupts

An interrupt occurs when normal execution

is halted temporarily in order for the CPU

to attend to some more pressing matter.

Question

Can you interrupt an interrupt service

routine?

Yes, sometimes: maskable vs. nonmaskable

interrupts.

Note

Interrupts generated by software are also

known as exceptions or traps.

4/15/2015

2

The RISC design philosophy

What is RISC?

RISC = Ridiculously Simple Computer

 Or

RISC = Reduced Instruction Set Computers

As instruction sets became increasingly

complex, a movement developed to

simplify instruction sets and the machines

that run them. It became known as the

Reduced Instruction Set Computer (RISC)

approach.

Its goal could be summarized as:

Increase cycle speed at all costs.

Cray-1 memory board
• It requires its own

electrical sub-station to
provide with power. The
unit electrical bill was
$30,000-$35,000 per
month. $20,000 for the
air-condition room and
about $10,000-$15,000
for the machine. Cost per
board was about $50,000
to replace with the
$1,000,000 per year
maintenance contract.

4/15/2015

3

Benefits of RISC

• RISC processor will cost less to design -- since
a significant cost of the chip can be the actual
R&D costs to create it, this can be substantial
on its own

• easier to design (and fewer bugs) means that
the processor will have a faster time to market

• faster time to market means the processor can
use newer processes

Elements of the RISC philosophy

1) Small, simple instruction sets

2) Many general-purpose registers

3) Instructions execute in one clock cycle

whenever possible

4) No microprogram

5) Intensive pipelining

1. Small, simple instruction sets

• Studies show that most instructions

executed are of very basic types

• (Not the same as the proportion of

instructions written)

• Examples: assign, loop, if, call

2. Large number of registers

• Studies show that compiled code has

– lots of copy statements

– lots of operand accesses

• Two possible approaches:

– Software: Compiler optimizes register use

– Hardware: Register windows

4/15/2015

4

Register windows

• Small sets of registers

• Subroutine calls switch windows instead

of pushing parameters/local variables/

register contents onto stack

• Examples: The Pyramid (first commercial

RISC machine) had 16 windows with 32

registers each

Registers vs. cache

Large register sets and cache memory are

two approaches that use proximity as a way

to speed up access time.

• How are they different?

• What are the advantages and

disadvantages of each?

3. One instruction per cycle

• 1 RISC instruction =

 1 CISC microinstruction

• Instructions are hard-wired – decoder

circuitry

• “Fetch/decode/execute” becomes

“fetch/execute”

3. One instruction per cycle

• Instructions are register-to-register

whenever possible

• Simpler addressing modes

• In fact: no expanding opcodes, either

• Therefore: what use is a microprogram?

4/15/2015

5

4. No microprogram

• If the other principles have been

implemented, there is no need/use for a

microprogram

5. Pipelining

• Note: load and store necessarily take

longer, because of memory access

• Start them in one cycle, let them finish

later; meanwhile, go ahead and execute

next instruction(s)

• What if next instructions depend on the

results of load/store?

• Arrange it so this doesn’t happen!

Note

At one time, this discussion was cast as the

RISC vs. CISC debate.

In practice, RISC principles have now

largely been adopted into processor design.

4/15/2015

6

Why RISC?
Simple instructions are preferred

• Complex instructions are mostly ignored by compilers

– Due to semantic gap

Simple data structures

• Complex data structures are used relatively infrequently

• Better to support a few simple data types efficiently

– Synthesize complex ones

Simple addressing modes

• Complex addressing modes lead to variable length instructions

– Lead to inefficient instruction decoding and scheduling

