Topic for today:

Graphical Processing Units
(GPUs)

Graphical Processing Unit

A GPU is a heterogeneous chip multi-processor (highly tuned for graphics)

-DDDDDDDD
T e e

Execution contexts
(128 KB)

“Shared” memory
(16+48 KB)

Source: Fermi Compute Architecture Whitepaper
CUDA Programming Guide 3.1, Appendix G

GPU-accelerated computing

Use of a graphics processing unit (GPU)
together with a CPU to accelerate scientific,
analytics, engineering, consumer, and
enterprise applications.

Graphics Workload

Streaming computation on pixels

-0

Graphics Workload

Identical, Streaming computation on pixels

Graphics Workload

Identical, Independent, Streaming computation on pixels

Generalize: Data Parallel Workloads

Identical, iIndependent computation on multiple data inputs

INS = color,, ., = f(color;,)

color,,,. = f(color;,)

e e

-

colory,, = f(color;,) =
.

color,,. = f(color:,)

Programming the GPU (NVIDIA)

» Heterogeneous execution model
— CPU is the host, GPU is the device

» Develop a C-like programming language for
GPU

« Unify all forms of GPU parallelism as
CUDA thread

* Programming model 1s “Single Instruction
Multiple Thread”

Threads and Blocks

e A thread iIs associated with each data
element

» Threads are organized into blocks
 Blocks are organized into a grid

» GPU hardware handles thread management,
not applications or OS

NVIDIA GPU Architecture

« Similarities to vector machines:
— Works well with data-level parallel problems
— Scatter-gather transfers
— Mask registers
— Large register files

 Differences:
— No scalar processor
— Uses multithreading to hide memory latency

— Has many functional units, as opposed to a few
deeply pipelined units like a vector processor

Why GPU?

e Design target for CPUs:

e Make a single thread very fast
e Take control away from
programmer

¢ GPU Computing takes a
different approach:

e Throughput matters—
single threads do not

e Give explicit control to
programmer

"CPU-style” Cores

Data cache
(A big one)

Credit: Kayvon Fatahalian (Stanford)

Slimming down

ALU

(Execute)

Idea #1:

Remove components that
help a single instruction
stream run fast

Credit: Kayvon Fatahalian (Stanford)

More Space: Double the Number of Cores

Credit: Kayvon Fatahalian (Stanford)

..again

Credit: Kayvon Fatahalian (Stanford)

.and again

Kayvon Fatahalian (Stanford)

Credit:

...and again

el ol

i

— 16 independent instruction streams

L]

Reality: instruction streams not actually
very different/independent

Credit: Kayvon Fatahalian (Stanford)

Saving Yet More Space

S

Credit: Kayvon Fatahalian (Stanford)

Saving Yet More Space

managing an instruction stream
across many ALUs

— SIMD

ALU | Idea #2
Ex
Execute) Amortize cost/complexity of

Credit: Kayvon Fatahalian (Stanford)

Saving Yet More Space

ALUS

ALU1| |ALU2| | ALU3 | | ALUS
_I _I Idea #2
m.ur.l

ALU7 | | ALUSB Amortize cost/complexity of
managing an instruction stream

E E E E across many ALUs
— SIMD

Coxf cex] cox| cux
_ SharedCtxData

Credit: Kayvon Fatahalian (Stanford)

Gratuitous Amounts of Parallelism!

Kayvon Fatahalian (Stanford)

Credit:

Gratuitous Amounts of Parallelism!

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Credit: Kayvon Fatahalian (Stanford)

CPU vs. GPU

i

CPU GPU
MULTIPLE CORES THOUSANDS OF CORES

https://www.youtube.com/watch?v=-P28LKWTzrI
https://www.youtube.com/watch?v=-P28LKWTzrI
https://www.youtube.com/watch?v=-P28LKWTzrI
https://www.youtube.com/watch?v=-P28LKWTzrI
https://www.youtube.com/watch?v=-P28LKWTzrI
https://www.youtube.com/watch?v=-P28LKWTzrI

What 1s CUDA?

 Scalable parallel programming model and a
software environment for parallel
computing
— Minimal extensions to C/C++ environment

— Heterogeneous serial-parallel programming
model

What 1s OpenCL?

* OpenCL (Open Computing Language) Is an
open, royalty-free standard for general
purpose parallel programming across CPUs,
GPUs, and other processors.

— Device neutral
— Vendor neutral

GPGPU

GPU Computing: an emerging field seeking to
harness GPUs for general-purpose computation.

Motivation: Flexible and Precise

« Modern GPUs are deeply programmable
— Programmable pixel, vector, video engines
— Solidifying high-level language support

» Modern GPUs support high precision
— 32 bit floating point throughout the pipeline
— High enough for many (not all) applications
— Newest GPUs have 64 bit support

— |

mviDIA

Application Code

RS =

Compute-intensive Functions

Rest of Sequential
CPU Code

~wr—

MI\Jinn

Est. 28,000 people/year get
cancer from CT scans

UCSD: advanced CT
reconstruction requces
radiation by 35-70x

CPUs: 2 hours CUDA: 2 minutes
(unusable) (clinically practical)

.

mviIiDIA

Only 2% of surgeons will operate on a
beating heart

Patient stands to lose 1 point of IQ every10
min with heart stopped

GPU enables real-time motion
compensation to virtually stop beating heart
for surgeons

