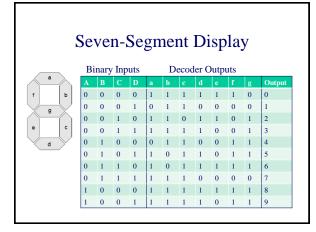
Topics for today:

More digital logic Basic circuits

Question

Given a truth table, how do you find a circuit that produces it?


Use sum-of-products analysis.

Example

<u>A</u>	<u>B</u>	<u>C</u> 0	Output 1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Identity Name	AND Form	OR Form
Identity Law	1x = x	0+x=x
Null (or Dominance) Law	0x = 0	1 + x = 1
Idempotent Law	XX = X	X + X = X
Inverse Law	xx'=0	x + x' = 1
Commutative Law	xy = yx	X + y = y + X
Associative Law	(xy)z = x(yz)	(x + y) + z = x + (y + z)
Distributive Law	x + (yz) = (x + y)(x + z)	x(y+z) = xy + xz
Absorption Law	X(X + Y) = X	x + xy = x
DeMorgan's Law	(xy)' = x' + y'	(x+y)'=x'y'
Double Complement Law	x'' = x	

TABLE 3.5 Basic Identities of Boolean Algebra

Half-adder

A half-adder is a circuit which takes two input bits and produces two outputs, a *sum* and a *carry*.

Full-adder

A full-adder is a circuit which takes three input bits (two ordinary inputs and a *carry-in*) and produces two outputs, a *sum* and a *carry-out*.

Note:

A *logic diagram* shows the gates in a circuit and the connections between them.

A *block diagram* shows the major components of a circuit and the connections between them.

Ripple carry is simple but slow.

More complicated circuits for multi-bit adders speed up the computation (at the cost of additional gates.)