Topics in Computer Science: Data Mining

COMP 345 - CRN 19746/19839

Assignment 4

Fall 2018

Classification

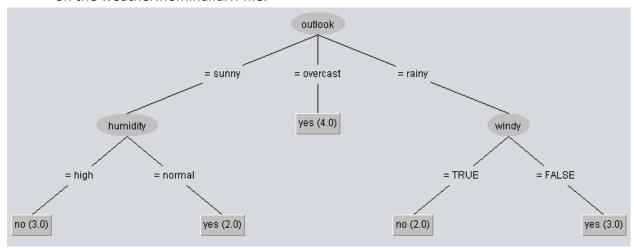
Due Mon. Oct. 1st/Tues. Oct. 2nd (at the beginning of class)

- 1. Read Chapter 8 in Han Book
- 2. We want to predict the outcome of the next tennis match between the two top-ranked female tennis players: Serena Williams and Dinara Safina. The outcomes for each match are labeled as S for Serena or D for Dinara. Other information we know about each match is the time of day it was played, Match Type, and Court Surface.

Using the following training set, determine which attribute would be selected for the first split using the ID3 decision tree induction algorithm. Show your work, and draw the resulting tree after the first split.

Time	Match Type	Court Surface	Outcome
Morning	Master	Grass	S
Afternoon	Grand Slam	Clay	S
Night	Friendly	Hard	S
Afternoon	Friendly	Mixed	D
Afternoon	Master	Clay	D
Afternoon	Grand Slam	Grass	S
Afternoon	Grand Slam	Hard	S
Afternoon	Grand Slam	Hard	S
Morning	Master	Grass	S
Afternoon	Grand Slam	Clay	D
Night	Friendly	Hard	S
Night	Master	Mixed	D
Afternoon	Master	Clay	D
Afternoon	Master	Grass	S
Afternoon	Grand Slam	Hard	S
Afternoon	Grand Slam	Clay	S

3. Imagine that you are given the following set of training instances. Each feature can take on one of three nominal values: a, b, or c.


F1	F2	F3	Category (Class)
a	С	а	Р
С	а	С	Р
b	С	а	N
С	С	b	N
а	а	С	N

How would a Naïve Bayes system classify the following test example? Be sure to show your work.

$$F1 = a, F2 = c, F3 = b$$

4. Suppose that there are a total of 50 data mining related documents in a library of 200 documents. Suppose that a search engine retrieves 10 documents after a user enters 'data mining' as a query, of which 5 are data mining related documents. What are the precision and recall?

5. The following decision tree is the tree produced by running the J48 algorithm in Weka on the weather.nominal.arff file.

Use the decision tree to predict the class labels for the following test set of data and fill the correct value in for the Predicted Class value for each instance.

Outlook	Temperature	Humidity	Windy	Play (Actual)	Predicted Class
sunny	hot	high	FALSE	no	
overcast	hot	high	TRUE	yes	
rainy	hot	normal	FALSE	no	
overcast	mild	high	FALSE	yes	
rainy	cool	normal	TRUE	yes	
rainy	cool	high	TRUE	no	
overcast	mild	normal	FALSE	yes	
sunny	hot	high	FALSE	no	
sunny	cool	normal	FALSE	yes	
rainy	mild	normal	FALSE	no	
sunny	mild	normal	TRUE	yes	
overcast	mild	normal	FALSE	no	
overcast	hot	high	FALSE	yes	
rainy	mild	high	TRUE	no	

Using the predicted and actual class values above, fill in the correct values for the following confusion matrix.

Actual Class \ Predicted Class	Play = yes	Play = no	Total
Play = Yes			
Play = No			
Total			

Once you've filled in the values for the confusion matrix above, use those values to evaluate the performance of the decision tree model.		
a.	Accuracy	
b.	Specificity	
c.	Sensitivity	
d.	Precision	
e.	F-measure	