COMP 345: Data Mining More on Clustering

Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Announcements

- · Assignment 5 has been assigned
 - Due Wed. Oct. 24th/Thurs. Oct. 25th at the beginning of class
- Extra Credit Opportunity (2 points):
 - Attend Dr. Lee Giles talk on Deep Learning
 - Friday, October 19th at 3p.m. in FJ-B
 - Turn in a 1 paragraph summary of what you learned and what you found interesting about the talk by beginning of class on Mon. Oct. 22nd/Tues. Oct. 23rd
- Future Extra Credit Opportunity (2 points)
 - Attend Dr. Stanley Pounds talk on his Biostatistics Research at St.
 - Thurs. Nov. 1st at 4pm in Spence Wilson Room
 - Turn in a 1 paragraph summary of what you learned and what you found interesting about the talk by beginning of class on Mon. Nov. 5th /Tues. Nov. 6th

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- · Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

3

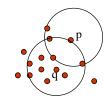
Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - CLIQUE: Agrawal, et al. (SIGMOD'98) (more grid-based)

Density-Based Clustering: Basic Concepts

- Two parameters:
 - Eps: Maximum radius of the neighborhood
 - MinPts: Minimum number of points in an Epsneighborhood of that point
- N_{Eps}(q): {p belongs to D | dist(p,q) ≤ Eps}
- Directly density-reachable: A point p is directly densityreachable from a point q w.r.t. Eps, MinPts if
 - -p belongs to $N_{Eps}(q)$
 - core point condition:

 $|N_{Eps}(q)| \ge MinPts$



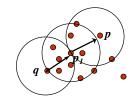
MinPts = 5

Eps = 1 cm

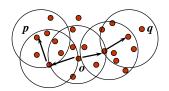
.

Density-Reachable and Density-Connected

- Density-reachable:
 - A point p is density-reachable from a point q w.r.t. Eps, MinPts if there is a chain of points $p_1, ..., p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i

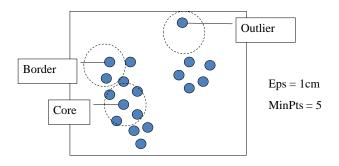


- Density-connected
 - A point p is density-connected to a point q w.r.t. Eps, MinPts if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and MinPts



DBSCAN: Density-Based Spatial Clustering of Applications with Noise

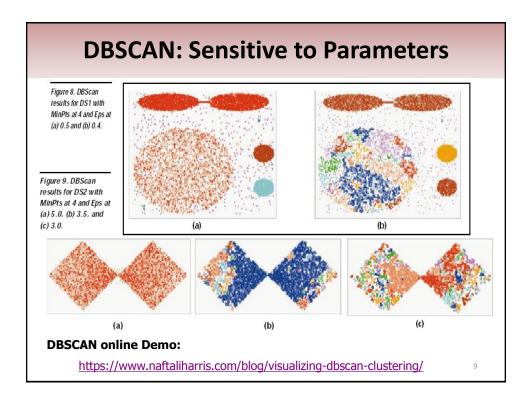
- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise



7

DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from p w.r.t. Eps and MinPts
- If p is a core point, a cluster is formed
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed
- If a spatial index is used, the computational complexity of DBSCAN is $O(n \log n)$, where n is the number of database objects. Otherwise, the complexity is $O(n^2)$



OPTICS: A Cluster-Ordering Method (1999)

- OPTICS: Ordering Points To Identify the Clustering Structure
 - Ankerst, Breunig, Kriegel, and Sander (SIGMOD'99)
 - Produces a special order of the database wrt its densitybased clustering structure
 - This cluster-ordering contains info equivalent to the densitybased clusterings corresponding to a broad range of parameter settings
 - Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure
 - Can be represented graphically or using visualization techniques

OPTICS: Some Extension from DBSCAN

- Index-based: k = # of dimensions, N: # of points
 - Complexity: O(N*log N)
- Core Distance of an object p: the smallest value ε such that the εneighborhood of p has at least MinPts objects

Let $N_{\epsilon}(p)$: ϵ -neighborhood of p, ϵ is a distance value Core-distance_{ϵ , MinPts}(p) = Undefined if card($N_{\epsilon}(p)$) < MinPts MinPts-distance(p), otherwise

 Reachability Distance of object p from core object q is the min radius value that makes p density-reachable from q

Reachability-distance_{ϵ , MinPts}(p, q) =
Undefined if q is not a core object
max(core-distance(q), distance (q, p)), otherwise

11

Core Distance & Reachability Distance

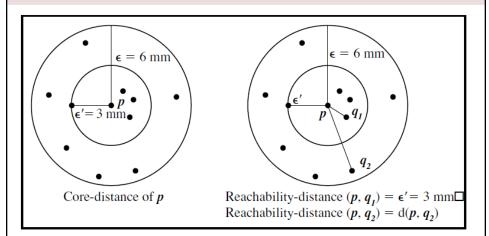


Figure 10.16: OPTICS terminology. Based on [ABKS99].

