COMP 345: Data Mining Analysis of Large Graphs: Link Analysis, PageRank

Slides Adapted From: www.mmds.org (Mining Massive Datasets)

Announcements

 For next time, watch the 3 video lectures on Moodle about MapReduce and take the online quiz.

Web Search: 2 Challenges

2 challenges of web search:

- (1) Web contains many sources of information Who to "trust"?
 - Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Literkoves A. Bajaraman, L. Illiman, Mining of Massive Datasets, http://www.mmds.org

13

Ranking Nodes on the Graph

- All web pages are not equally "important" www.joe-schmoe.com vs. www.stanford.edu
- There is large diversity in the web-graph node connectivity.
 Let's rank the pages by the link structure!

. Leskovec, A. Raiaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importance of nodes in a graph:
 - Page Rank
 - Topic-Specific (Personalized) Page Rank
 - Web Spam Detection Algorithms

Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

PageRank:
The "Flow" Formulation

Links as Votes

- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - www.stanford.edu has 23,400 in-links
 - www.joe-schmoe.com has 1 in-link
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_i has n out-links, each link gets r_i/n votes
- Page j's own importance is the sum of the votes on its in-links

 $r_i = r_i/3 + r_k/4$

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_i for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

"Flow" equations: $\mathbf{r_a} = \mathbf{r_v}/2 + \mathbf{r_m}$ $r_m = r_a/2$

a/2 $\mathbf{r}_{v} = \mathbf{r}_{v}/2 + \mathbf{r}_{a}/2$

The web in 1839

Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
- Flow equations: $\begin{aligned} \mathbf{r}_{y} &= \mathbf{r}_{y}/2 + \mathbf{r}_{a}/2 \\ \mathbf{r}_{a} &= \mathbf{r}_{y}/2 + \mathbf{r}_{m} \\ \mathbf{r}_{m} &= \mathbf{r}_{a}/2 \end{aligned}$

- No unique solution
- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:
 - $r_y + r_a + r_m = 1$
 - Solution: $r_y = \frac{2}{5}$, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

Lieckovec A. Pajaraman, I. Illiman: Mining of Massive Datasets, http://www.mmds.org

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - Let page i has d_i out-links
 - If $i \to j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a column stochastic matrix
 - Columns sum to 1
- Rank vector r: vector with an entry per page
 - r_i is the importance score of page i
 - $\sum_{i} r_{i} = 1$
- The flow equations can be written $r_j = \sum_{i o j} \frac{r_i}{\mathrm{d_i}}$

Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Example

- Remember the flow equation: $r_j = \sum_{i \to j} \frac{r_i}{d_i}$ Flow equation in the matrix form

$$M \cdot r = r$$

Suppose page i links to 3 pages, including j

Eigenvector Formulation

The flow equations can be written

$$r = M \cdot r$$

- So the rank vector r is an eigenvector of the stochastic web matrix M
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1
 - Largest eigenvalue of M is 1 since M is column stochastic (with non-negative entries)
 - We know \mathbf{r} is unit length and each column of \mathbf{M} sums to one, so $Mr \leq 1$

NOTE: x is an eigenvector with the corresponding eigenvalue λ if: $Ax = \lambda x$

We can now efficiently solve for r! The method is called Power iteration

Example: Flow Equations & M

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r = M \cdot r$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N,....,1/N]^T$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
- d_i out-degree of node i
- Stop when $|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}|_1 < \varepsilon$

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the L₁ norm Can use any other vector norm, e.g., Euclidean

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

PageRank: How to solve?

Power Iteration:

- Set $r_i = 1/N$
- 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- 2: r = r'
- Goto 1
- Example:

$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{array}{c} 1/3 \\ 1/3 \\ 1/3 \end{array}$$

Iteration 0, 1, 2, ...

	y	
$a \leftarrow m$	a =	→ m

	v		m
	У	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

PageRank: How to solve?

Power Iteration:

- Set $r_i = 1/N$
- 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- 2: r = r'
- Goto 1
- **Example:**

Iteration 0, 1, 2, ...

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

27

0

1

1/2

1/2

0

 $\mathbf{r}_{\mathbf{y}} = \mathbf{r}_{\mathbf{y}}/2 + \mathbf{r}_{\mathbf{a}}/2$

 $\mathbf{r_a} = \mathbf{r_v}/2 + \mathbf{r_m}$

 $r_{\rm m} = r_{\rm a}/2$

Random Walk Interpretation

- Imagine a random web surfer:
 - At any time t, surfer is on some page i
 - At time t + 1, the surfer follows an out-link from i uniformly at random

- p(t) ... vector whose ith coordinate is the prob. that the surfer is at page i at time t
- lacksquare So, p(t) is a probability distribution over pages

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

29

The Stationary Distribution

- Where is the surfer at time *t*+1?
 - Follows a link uniformly at random $p(t+1) = M \cdot p(t)$

- Suppose the random walk reaches a state $p(t+1) = M \cdot p(t) = p(t)$ then p(t) is stationary distribution of a random walk
- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Existence and Uniqueness

A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy **certain conditions**, the **stationary distribution is unique** and eventually will be reached no matter what the initial probability distribution at time **t** = **0**

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org