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COMP 345: Data Mining
Analysis of Large Graphs: 

Link Analysis, PageRank

Slides Adapted From: www.mmds.org (Mining Massive Datasets)

Announcements

• For next time, watch the 3 video lectures on 
Moodle about MapReduce and take the online 
quiz.  
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http://www.mmds.org/
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Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
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Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
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Citation networks and Maps of science
[Börner et al., 2012]
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Seven Bridges of Königsberg
[Euler, 1735]

Return to the starting point by traveling each 
link of the graph once and only once.
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 Web as a directed graph:

 Nodes: Webpages

 Edges: Hyperlinks
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 How to organize the Web?
 First try: Human curated

Web directories

 Yahoo, DMOZ, LookSmart

 Second try: Web Search

 Information Retrieval investigates:
Find relevant docs in a small 
and trusted set

 Newspaper articles, Patents, etc.

 But: Web is huge, full of untrusted documents, 
random things, web spam, etc.
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2 challenges of web search:
 (1) Web contains many sources of information

Who to “trust”?

 Trick: Trustworthy pages may point to each other!

 (2) What is the “best” answer to query 
“newspaper”?

 No single right answer

 Trick: Pages that actually know about newspapers 
might all be pointing to many newspapers
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 All web pages are not equally “important”

www.joe-schmoe.com vs. www.stanford.edu

 There is large diversity 
in the web-graph 
node connectivity.
Let’s rank the pages by 
the link structure!
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http://www.joe-schmoe.com/
http://www.stanford.edu/
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 We will cover the following Link Analysis 
approaches for computing importance
of nodes in a graph:

 Page Rank

 Topic-Specific (Personalized) Page Rank

 Web Spam Detection Algorithms
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 Idea: Links as votes

 Page is more important if it has more links

 In-coming links? Out-going links?

 Think of in-links as votes:
 www.stanford.edu has 23,400 in-links

 www.joe-schmoe.com has 1 in-link

 Are all in-links are equal?

 Links from important pages count more

 Recursive question! 
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 Each link’s vote is proportional to the 
importance of its source page

 If page j with importance rj has n out-links, 
each link gets rj / n votes

 Page j’s own importance is the sum of the 
votes on its in-links
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 A “vote” from an important 
page is worth more

 A page is important if it is 
pointed to by other important 
pages

 Define a “rank” rj for page j
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The web in 1839

“Flow” equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
𝒅𝒊 … out-degree of node 𝒊



11/5/2018

11

 3 equations, 3 unknowns, 
no constants
 No unique solution

 All solutions equivalent modulo the scale factor
 Additional constraint forces uniqueness:

 𝒓𝒚 + 𝒓𝒂 + 𝒓𝒎 = 𝟏

 Solution: 𝒓𝒚 =
𝟐

𝟓
, 𝒓𝒂 =

𝟐

𝟓
, 𝒓𝒎 =

𝟏

𝟓
 Gaussian elimination method works for 

small examples, but we need a better 
method for large web-size graphs

 We need a new formulation!
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ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

Flow equations:

 Stochastic adjacency matrix 𝑴
 Let page 𝑖 has 𝑑𝑖 out-links

 If 𝑖 → 𝑗, then  𝑀𝑗𝑖 =
1

𝑑𝑖
else   𝑀𝑗𝑖 = 0

 𝑴 is a column stochastic matrix
 Columns sum to 1

 Rank vector 𝒓: vector with an entry per page
 𝑟𝑖 is the importance score of page 𝑖

  𝑖 𝑟𝑖 = 1

 The flow equations can be written 

𝒓 = 𝑴 ⋅ 𝒓
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 Remember the flow equation:
 Flow equation in the matrix form

𝑴 ⋅ 𝒓 = 𝒓
 Suppose page i links to 3 pages, including j
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 The flow equations can be written
𝒓 = 𝑴 ∙ 𝒓

 So the rank vector r is an eigenvector of the 
stochastic web matrix M
 In fact, its first or principal eigenvector, 

with corresponding eigenvalue 1
 Largest eigenvalue of M is 1 since M is

column stochastic (with non-negative entries)
 We know r is unit length and each column of M

sums to one, so 𝑴𝒓 ≤ 𝟏

 We can now efficiently solve for r!
The method is called Power iteration
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NOTE: x is an 

eigenvector with 

the corresponding 

eigenvalue λ if:

𝑨𝒙 = 𝝀𝒙
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r = M∙r

y       ½    ½    0     y

a   =  ½     0    1     a

m       0    ½    0    m
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ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

 Given a web graph with n nodes, where the 
nodes are pages and edges are hyperlinks

 Power iteration: a simple iterative scheme

 Suppose there are N web pages

 Initialize: r(0) = [1/N,….,1/N]T

 Iterate: r(t+1) = M ∙ r(t)

 Stop when |r(t+1) – r(t)|1 < 
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|x|1 = 1≤i≤N|xi| is the L1 norm 

Can use any other vector norm, e.g., Euclidean
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 Power Iteration:

 Set 𝑟𝑗 = 1/N

 1: 𝑟′𝑗 =  𝑖→𝑗
𝑟𝑖

𝑑𝑖

 2: 𝑟 = 𝑟′

 Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15
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Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
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Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
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 Imagine a random web surfer:

 At any time 𝒕, surfer is on some page 𝒊

 At time 𝒕 + 𝟏, the surfer follows an 
out-link from 𝒊 uniformly at random

 Ends up on some page 𝒋 linked from 𝒊

 Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝒊th coordinate is the 

prob. that the surfer is at page 𝒊 at time 𝒕

 So, 𝒑(𝒕) is a probability distribution over pages
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 Where is the surfer at time t+1?

 Follows a link uniformly at random

𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

 Suppose the random walk reaches a state 
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)

then 𝒑(𝒕) is stationary distribution of a random walk

 Our original rank vector 𝒓 satisfies  𝒓 = 𝑴 ⋅ 𝒓

 So, 𝒓 is a stationary distribution for 
the random walk

)(M)1( tptp 
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 A central result from the theory of random 
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 

eventually will be reached no matter what the 
initial probability distribution at time t = 0

31J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org


