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COMP 345: Data Mining

Analysis of Large Graphs:
Link Analysis, PageRank

Slides Adapted From: www.mmds.org (Mining Massive Datasets)

Announcements

* For next time, watch the 3 video lectures on
Moodle about MapReduce and take the online
quiz.



http://www.mmds.org/

New Topic: Graph Data!
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Duplicate
. document
detection

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
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Graph Data: Media Networks

Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
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Graph Data: Information Nets
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Graph Data: Communication Nets
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Seven Bridges of Konigsberg

[Euler, 1735]
Return to the starting point by traveling each
link of the graph once and only once.
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Web as a Graph

Web as a directed graph:
Nodes: Webpages
Edges: Hyperlinks
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Web as a Directed Graph
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Broad Question

DO

How to organize the Web? .o poetic-@ -
— 77y oriom
First try: Human curated
Web directories
Yahoo, DMOZ, LookSmart
Second try: Web Search
Information Retrieval investigates:
Find relevant docs in a small
and trusted set
Newspaper articles, Patents, etc.

But: Web is huge, full of untrusted documents,
random things, web spam, etc.
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Web Search: 2 Challenges

2 challenges of web search:

(1) Web contains many sources of information
Who to “trust”?

Trick: Trustworthy pages may point to each other!
(2) What is the “best” answer to query
“newspaper”?

No single right answer

Trick: Pages that actually know about newspapers
might all be pointing to many newspapers

Ranking Nodes on the Graph

All web pages are not equally “important”

www.joe-schmoe.com vs. www.stanford.edu

There is large diversity
in the web-graph

node connectivity.
Let’s rank the pages by
the link structure!
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Link Analysis Algorithms

We will cover the following Link Analysis
approaches for computing importance
of nodes in a graph:

Page Rank

Topic-Specific (Personalized) Page Rank

Web Spam Detection Algorithms

PageRank:
The “Flow” Formulation




Links as Votes

Idea: Links as votes
Page is more important if it has more links
In-coming links? Out-going links?
Think of in-links as votes:

www.stanford.edu has 23,400 in-links

www.joe-schmoe.com has 1 in-link

Are all in-links are equal?
Links from important pages count more
Recursive question!
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Example: PageRank Scores
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Simple Recursive Formulation

Each link’s vote is proportional to the
importance of its source page

If page j with importance r; has n out-links,
each link gets r;/ n votes

Page j's own importance is the sum of the
votes on its in-links

r=ri/3+r,/4

PageRank: The “Flow"” Model

A “vote” from an important
page is worth more

y/2
A page is important if it is
pointed to by other important
pages al2 V2
Define a “rank” r; for page j m
j <—®
al2

F. = E 1 “Flow” equations:
) —~ . ry =r,/2+r,/2
I— 1 _
] rp =r/2+rg
M =1r,/2
d; ... out-degree of node i
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Solving the Flow Equations

Flow equations:

3 equations, 3 unknowns, ry =1, /2 +1,/2
no constants ra =ry2+ 1,
M =r,/2

No unique solution

All solutions equivalent modulo the scale factor
Additional constraint forces uniqueness:

ry +ro+1r, =1

Solution: 2 2 _ 1

(o) utlon.ry =3 ro = Y rm = <

Gaussian elimination method works for
small examples, but we need a better
method for large web-size graphs

We need a new formulation!
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PageRank: Matrix Formulation

Stochastic adjacency matrix M
Let page i has d; out-links

1
Ifi - j,then M = else M; =0

M is a column stochastic matrix
Columns sumto 1

Rank vector r: vector with an entry per page
7, is the importance score of page i

The flow equations can be written I = Z—'

r=M-r ~id
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N
d;

Remember the flow equation: I; = Z
Flow equation in the matrix form i~

M-r=r
Suppose page i links to 3 pages, including j

] )

13—

Ny

Eigenvector Formulation

The flow equations can be written
r=M-r

stochastic web matrix M
In fact, its first or principal eigenvector,
with corresponding eigenvalue 1

Largest eigenvalue of M is 1 since M is
column stochastic (with non-negative entries)

We know r is unit length and each column of M
sumstoone,soMr <1

We can now efficiently solve for r!
The method is called Power iteration
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So the rank vector r is an eigenvector of the

NOTE: x is an
eigenvector with
the corresponding
eigenvalue A if:

Ax = Ax

24
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Example: Flow Equations & M
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Power Iteration Method

Given a web graph with n nodes, where the
nodes are pages and edges are hyperlinks
Power iteration: a simple iterative scheme

Suppose there are N web pages ©

Initialize: r® = [1/N,....,1/N]T rj‘”l’ :Zr'd_
rttl) = M - p(0) i)
lterate: r M-r d; .... out-degree of node i

Stop when |- 0| <¢

[X]; = 2Zq<ienlXil is the L1 norm
Can use any other vector norm, e.g., Euclidean
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PageRank: How to solve?

Power Iteration:

Setr; = 1/N
1r, =Y, %t
j Zl—v d;
2:r=1'
Goto 1
Example:
ry 1/3
ra|= 1/3
M 1/3

lteration 0, 1, 2, ...
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PageRank: How to solve?

Power Iteration:

Setr; = 1/N
11, =Y. =
J Zl ]di

2:r=1'

Goto 1
Example:
r, 13 13 512 9/24
= U3 36 U3 11/24
m 1/3 1/6 3/12 1/6

lteration 0, 1, 2, ...
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6/15

6/15
3/15

11/5/2018

14



Random Walk Interpretation

At any time t, surfer is on some page i

At time t + 1, the surfer follows an
out-link from i uniformly at random = Z f

Ends up on some page j linked from i =1 doue()

Imagine a random web surfer: K

Process repeats indefinitely
Let:

p(t) ... vector whose ith coordinate is the
prob. that the surfer is at page i at time ¢

So, p(t) is a probability distribution over pages

Ullman: Mining of Massive Datasets http mmds.or:

The Stationary Distribution

Where is the surfer at time t+1?
Follows a link uniformly at random
p(t+1)= M p(t) p(t+1)=M- p(t)
Suppose the random walk reaches a state
p(t+1)= M- p() = p(t)
then p(t) is stationary distribution of a random walk
Our original rank vector r satisfies r = M - r

So, 1 is a stationary distribution for
the random walk
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Existence and Uniqueness

A central result from the theory of random
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions,
the stationary distribution is unique and

eventually will be reached no matter what the
initial probability distribution at time t=0
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