
11/7/2018

1

COMP 345: Data Mining
More on PageRank

Slides Adapted From: www.mmds.org (Mining Massive Datasets)

Announcements

• Assignment 6 

– due Wed. Nov. 14th/Thurs. Nov. 15th
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http://www.mmds.org/
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MapReduce Quiz Problem
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Suppose our input data to a map-reduce operation 
consists of integer values (the keys are not important). 
The map function takes an integer i and produces the 
list of pairs (p,i) such that p is a prime divisor of i. For 
example, map(12) = [(2,12), (3,12)]. The reduce function 
is addition. That is, reduce(p, [i , i , ...,i ]) is (p,i +i +...+i ). 
Compute the output, if the input is the set of integers 
15, 21, 24, 30, 49. Then, identify, in the list below, one of 
the pairs in the output.

a. (7, 70)
b. (5, 49)
c. (2, 47)
d. (6, 54)



11/7/2018

3

 Does this converge?

 Does it converge to what we want?

 Are results reasonable?
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 Example:
ra 1 0 1 0

rb 0 1 0 1
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 Example:
ra 1 0 0 0

rb 0 1 0 0
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2 problems:
 (1) Some pages are 

dead ends (have no out-links)

 Random walk has “nowhere” to go to

 Such pages cause importance to “leak out”

 (2) Spider traps:
(all out-links are within the group)

 Random walked gets “stuck” in a trap

 And eventually spider traps absorb all importance
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Dead end
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 Power Iteration:

 Set 𝑟𝑗 = 1

 𝑟𝑗 =  𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1
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Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m.

 The Google solution for spider traps: At each 
time step, the random surfer has two options

 With prob. , follow a link at random

 With prob. 1-, jump to some random page

 Common values for  are in the range 0.8 to 0.9

 Surfer will teleport out of spider trap 
within a few time steps
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 Power Iteration:

 Set 𝑟𝑗 = 1

 𝑟𝑗 =  𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0
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Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank “leaks” out since the matrix is not stochastic.

 Teleports: Follow random teleport links with 
probability 1.0 from dead-ends

 Adjust matrix accordingly
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y

a m

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

y

a m
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Why are dead-ends and spider traps a problem 
and why do teleports solve the problem?
 Spider-traps are not a problem, but with traps 

PageRank scores are not what we want

 Solution: Never get stuck in a spider trap by 
teleporting out of it in a finite number of steps

 Dead-ends are a problem

 The matrix is not column stochastic so our initial 
assumptions are not met

 Solution: Make matrix column stochastic by always 
teleporting when there is nowhere else to go
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 Google’s solution that does it all:
At each step, random surfer has two options:

 With probability ,  follow a link at random

 With probability 1-, jump to some random page

 PageRank equation [Brin-Page, 98]

𝑟𝑗 = 

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁
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di … out-degree 
of node i

This formulation assumes that 𝑴 has no dead ends. We can either 

preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.
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 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 = 

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

 The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁 𝑁×𝑁
 We have a recursive problem: 𝒓 = 𝑨 ⋅ 𝒓

And the Power method still works!
 What is  ?

 In practice  =0.8,0.9 (make 5 steps on avg., jump)
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[1/N]NxN…N by N matrix

where all entries are 1/N

y

a    =

m

1/3

1/3

1/3

0.33

0.20

0.46

0.24

0.20

0.52

0.26

0.18

0.56

7/33

5/33

21/33

. . .
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13/15

7/15

1/2 1/2   0

1/2   0    0

0   1/2   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A
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Suppose we compute PageRank with a β of 0.7, and we 
introduce the additional constraint that the sum of the 
PageRanks of the three pages must be 3, to handle the 
problem that otherwise any multiple of a solution will 
also be a solution. Compute the PageRanks a, b, 
and c of the three pages A, B, and C, respectively. Then, 
identify from the list below, the true statement.
a. a + b = 1.025
b. a + b = 0.705
c. a + c = 2.035
d. a + b = 0.55
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 Key step is matrix-vector multiplication
 rnew = A ∙ rold

 Easy if we have enough main memory to 
hold A, rold, rnew

 Say N = 1 billion pages
 We need 4 bytes for 

each entry (say)

 2 billion entries for 
vectors, approx 8GB

 Matrix A has N2 entries
 1018 is a large number!
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½   ½   0

½   0   0

0    ½   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

7/15  7/15   1/15

7/15  1/15   1/15

1/15  7/15  13/15

0.8 +0.2

A = ∙M + (1-) [1/N]NxN

=

A =

 Suppose there are N pages
 Consider page i, with di out-links
 We have Mji = 1/|di| when i→ j

and Mji = 0 otherwise
 The random teleport is equivalent to:
 Adding a teleport link from i to every other page 

and setting transition probability to (1-)/N

 Reducing the probability of following each 
out-link from 1/|di| to /|di|

 Equivalent: Tax each page a fraction (1-) of its 
score and redistribute evenly 
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 𝒓 = 𝑨 ⋅ 𝒓, where 𝑨𝒋𝒊 = 𝜷𝑴𝒋𝒊 +
𝟏−𝜷

𝑵

 𝑟𝑗 =  i=1
𝑁 𝐴𝑗𝑖 ⋅ 𝑟𝑖

 𝑟𝑗 =  𝑖=1
𝑁 𝛽 𝑀𝑗𝑖 +

1−𝛽

𝑁
⋅ 𝑟𝑖

=  i=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
 i=1
𝑁 𝑟𝑖

=  i=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
since  𝑟𝑖 = 1

 So we get: 𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏−𝜷

𝑵 𝑵
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[x]N … a vector  of length N with all entries x
Note: Here we assumed M

has no dead-ends

 We just rearranged the PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏 − 𝜷

𝑵
𝑵

 where [(1-)/N]N is a vector with all N entries (1-)/N

 M is a sparse matrix! (with no dead-ends)

 10 links per node, approx 10N entries
 So in each iteration, we need to:

 Compute rnew =  M ∙ rold

 Add a constant value (1-)/N to each entry in rnew

 Note if M contains dead-ends then  𝒋 𝒓𝒋
𝒏𝒆𝒘 < 𝟏 and 

we also have to renormalize rnew so that it sums to 1
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 Input: Graph 𝑮 and parameter 𝜷
 Directed graph 𝑮 (can have spider traps and dead ends)
 Parameter 𝜷

 Output: PageRank vector 𝒓𝒏𝒆𝒘

 Set: 𝑟𝑗
𝑜𝑙𝑑 =

1

𝑁

 repeat until convergence:  𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 > 𝜀

 ∀𝑗: 𝒓′𝒋
𝒏𝒆𝒘 =  𝒊→𝒋𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊
𝒓′𝒋
𝒏𝒆𝒘 = 𝟎 if in-degree of 𝒋 is 0

 Now re-insert the leaked PageRank:

∀𝒋: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓′𝒋

𝒏𝒆𝒘
+
𝟏−𝑺

𝑵

 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘

23

where: 𝑆 =  𝑗 𝑟′𝑗
𝑛𝑒𝑤

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends 

the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
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