COMP 345: Data Mining More on PageRank

Slides Adapted From: www.mmds.org (Mining Massive Datasets)

Reminder

- Assignment 6
 - due Wed. Nov. 14th/Thurs. Nov. 15th

PageRank: The Complete Algorithm

- Input: Graph G and parameter β
 - Directed graph G (can have spider traps and dead ends)
 - Parameter **β**
- Output: PageRank vector r^{new}
 - **Set**: $r_j^{old} = \frac{1}{N}$
 - repeat until convergence: $\sum_{j} |r_{j}^{new} r_{j}^{old}| > \varepsilon$
 - $\forall j \colon r'^{new}_{j} = \sum_{i \to j} \beta \, \frac{r^{old}_{i}}{d_{i}}$ $r'^{new}_{j} = \mathbf{0} \text{ if in-degree of } \mathbf{j} \text{ is } \mathbf{0}$
 - Now re-insert the leaked PageRank:

$$\forall j: r_j^{new} = r_j^{new} + \frac{1-S}{N}$$
 where: $S = \sum_j r_j^{new}$

 $r^{old} = r^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is **1-β**. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing **S**.

Liekkwer A Bajaraman Lillings of Massive Datasets http://www.mmds.org

Sparse Matrix Encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - Say 10N, or 4*10*1 billion = 40GB
 - Still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

Basic Algorithm: Update Step

- Assume enough RAM to fit r^{new} into memory
 - Store *r*^{old} and matrix **M** on disk
- 1 step of power-iteration is:

```
Initialize all entries of \mathbf{r}^{\text{new}} = (1-\beta) / \mathbf{N}

For each page i (of out-degree d_i):

Read into memory: i, d_i, dest_1, ..., dest_{d_i}, r^{old}(i)

For j = 1...d_i

\mathbf{r}^{\text{new}}(dest_j) += \beta r^{old}(i) / d_i
```

0	r ^{new}	source	degree	destination	r ^{old}	o
1		0	3	1, 5, 6		1
2		1	4	17, 64, 113, 117		2
4		2	2	13, 23		4
5 6		J. Leskovec, A. Rajaran	nan, J. Ullman: M	ining of Massive Datasets, http://www.mmds.org	1	5 6

Analysis

- Assume enough RAM to fit r^{new} into memory
 - Store rold and matrix M on disk
- In each iteration, we have to:
 - Read rold and M
 - Write r^{new} back to disk
 - Cost per iteration of Power method:
 - = 2|r| + |M|
- Question:
 - What if we could not even fit r^{new} in memory?

Block-based Update Algorithm

2

4 ____

src	degree	destination	
0	4	0, 1, 3, 5	
1	2	0, 5	
2	2	3, 4	
M			

- Break r^{new} into k blocks that fit in memory
- Scan M and rold once for each block

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

Analysis of Block Update

- Similar to nested-loop join in databases
 - Break r^{new} into k blocks that fit in memory
 - Scan M and rold once for each block
- Total cost:
 - k scans of M and rold
 - Cost per iteration of Power method: $k(|\mathbf{M}| + |\mathbf{r}|) + |\mathbf{r}| = k|\mathbf{M}| + (k+1)|\mathbf{r}|$
- Can we do better?
 - Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration

Block-S	trip	e Up	date A	Algorithm
rnew	src	degree	destination	1
	0	4	0, 1	
0	1	3	0	r ^{old}
	2	2	1	
				2
2	0	4	3	3,
3 🗔	2	2	3	5
	0	4	5	
4	1	3	5	
	2	2	4	
	ion nod	es in the	Each stripe co	g block of rnew

Block-Stripe Analysis

- Break *M* into stripes
 - Each stripe contains only destination nodes in the corresponding block of r^{new}
- Some additional overhead per stripe
 - But it is usually worth it
- Cost per iteration of Power method:
 - $=|M|(1+\varepsilon)+(k+1)|r|$

Some Problems with Page Rank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Solution: Topic-Specific PageRank
- Uses a single measure of importance
 - Other models of importance
 - Solution: Hubs-and-Authorities
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - Solution: TrustRank

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

Topic-Specific PageRank

- Instead of generic popularity, can we measure popularity within a topic?
- Goal: Evaluate Web pages not just according to their popularity, but by how close they are to a particular topic, e.g. "sports" or "history"
- Allows search queries to be answered based on interests of the user
 - Example: Query "Trojan" wants different pages depending on whether you are interested in sports, history and computer security

J. Leskovec, A. Raiaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

Topic-Specific PageRank

- Random walker has a small probability of teleporting at any step
- Teleport can go to:
 - Standard PageRank: Any page with equal probability
 - To avoid dead-end and spider-trap problems
 - Topic Specific PageRank: A topic-specific set of "relevant" pages (teleport set)
- Idea: Bias the random walk
 - When walker teleports, she pick a page from a set S
 - **S** contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic/query
 - For each teleport set S, we get a different vector r_S

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

12

Matrix Formulation

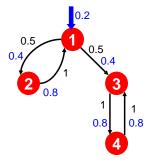
To make this work all we need is to update the teleportation part of the PageRank formulation:

$$A_{ij} = \begin{cases} \beta M_{ij} + (1 - \beta)/|S| & \text{if } i \in S \\ \beta M_{ij} + 0 & \text{otherwise} \end{cases}$$

- A is stochastic!
- We weighted all pages in the teleport set S equally
 - Could also assign different weights to pages!
- Compute as for regular PageRank:
 - Multiply by M, then add a vector
 - Maintains sparseness

J. Leskovec, A. Raiaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Example: Topic-Specific PageRank



Suppose $S = \{1\}, \beta = 0.8$

Node	Iteration				
	0	1	2	stable	
1	0.25	0.4	0.28	0.294	
2	0.25	0.1	0.16	0.118	
3	0.25	0.3	0.32	0.327	
4	0.25	0.2	0.24	0.261	

 $S=\{1\}, \beta=0.90$: $S=\{1\}$, $\beta=0.8$: **r**=[0.29, 0.11, 0.32, 0.26] $S=\{1\}, \beta=0.70$:

 $S=\{1,2,3,4\}, \beta=0.8$: **r**=[0.13, 0.10, 0.39, 0.36] $S=\{1,2,3\}$, $\beta=0.8$: **r**=[0.17, 0.07, 0.40, 0.36] **r**=[0.17, 0.13, 0.38, 0.30] $S=\{1,2\}$, $\beta=0.8$: **r**=[0.26, 0.20, 0.29, 0.23] $S=\{1\}$, $\beta=0.8$: **r**=[0.39, 0.14, 0.27, 0.19] **r**=[0.29, 0.11, 0.32, 0.26]

Discovering the Topic Vector S

- Create different PageRanks for different topics
 - The 16 DMOZ top-level categories:
 - arts, business, sports,...
- Which topic ranking to use?
 - User can pick from a menu
 - Classify query into a topic
 - Can use the context of the query
 - E.g., query is launched from a web page talking about a known topic
 - History of queries e.g., "basketball" followed by "Jordan"
 - User context, e.g., user's bookmarks, ...

PageRank: Summary

- "Normal" PageRank:
 - Teleports uniformly at random to any node
- Topic-Specific PageRank also known as Personalized PageRank:
 - Teleports to a topic specific set of pages
 - Nodes can have different probabilities of surfer landing there: S = [0.1, 0, 0, 0.2, 0, 0, 0.5, 0, 0, 0.2]
- Random Walk with Restarts:
 - Topic-Specific PageRank where teleport is always to the same node. S=[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

17

TrustRank: Combating the Web Spam

What is Web Spam?

- Spamming:
 - Any deliberate action to boost a web page's position in search engine results, incommensurate with page's real value
- Spam:
 - Web pages that are the result of spamming
- This is a very broad definition
 - **SEO** industry might disagree!
 - SEO = search engine optimization
- Approximately 10-15% of web pages are spam

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

10

Web Search

- Early search engines:
 - Crawl the Web
 - Index pages by the words they contained
 - Respond to search queries (lists of words) with the pages containing those words
- Early page ranking:
 - Attempt to order pages matching a search query by "importance"
 - First search engines considered:
 - (1) Number of times query words appeared
 - (2) Prominence of word position, e.g. title, header

J. Leskovec, A. Raiaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

U

First Spammers

- As people began to use search engines to find things on the Web, those with commercial interests tried to exploit search engines to bring people to their own site – whether they wanted to be there or not
- Example:
 - Shirt-seller might pretend to be about "movies"
- Techniques for achieving high relevance/importance for a web page

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

21

First Spammers: Term Spam

- How do you make your page appear to be about movies?
 - (1) Add the word movie 1,000 times to your page
 - Set text color to the background color, so only search engines would see it
 - (2) Or, run the query "movie" on your target search engine
 - See what page came first in the listings
 - Copy it into your page, make it "invisible"
- These and similar techniques are term spam

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

Google's Solution to Term Spam

- Believe what people say about you, rather than what you say about yourself
 - Use words in the anchor text (words that appear underlined to represent the link) and its surrounding text
- PageRank as a tool to measure the "importance" of Web pages

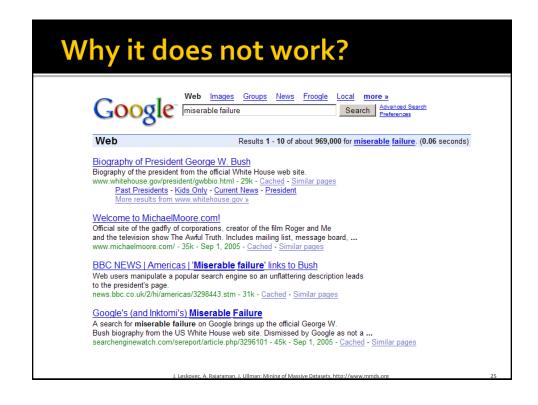
Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

23

Why It Works?

- Our hypothetical shirt-seller looses
 - Saying he is about movies doesn't help, because others don't say he is about movies
 - His page isn't very important, so it won't be ranked high for shirts or movies
- Example:
 - Shirt-seller creates 1,000 pages, each links to his with "movie" in the anchor text
 - These pages have no links in, so they get little PageRank
 - So the shirt-seller can't beat truly important movie pages, like IMDB

J. Leskovec, A. Raiaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org



Google vs. Spammers: Round 2!

- Once Google became the dominant search engine, spammers began to work out ways to fool Google
- Spam farms were developed to concentrate
 PageRank on a single page
- Link spam:
 - Creating link structures that boost PageRank of a particular page

Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Link Spamming

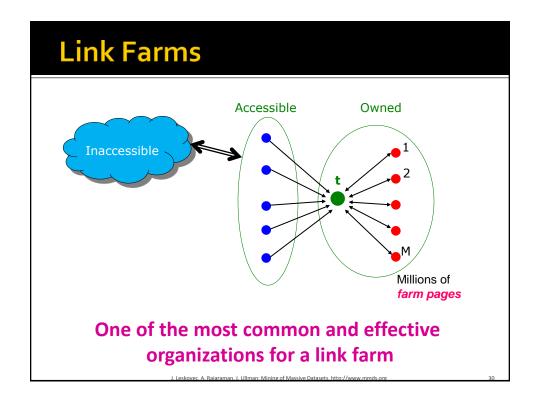
- Three kinds of web pages from a spammer's point of view
 - Inaccessible pages
 - Accessible pages
 - e.g., blog comments pages
 - spammer can post links to his pages
 - Owned pages
 - Completely controlled by spammer
 - May span multiple domain names

Link Farms

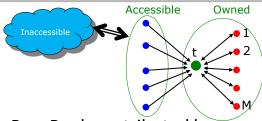
- Spammer's goal:
 - Maximize the PageRank of target page t
- Technique:
 - Get as many links from accessible pages as possible to target page t
 - Construct "link farm" to get PageRank multiplier effect

Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

.9



Analysis



N...# pages on the web M...# of pages spammer

- x: PageRank contributed by accessible pages
- y: PageRank of target page t
- Rank of each "farm" page = $\frac{\beta y}{M} + \frac{1-\beta}{N}$

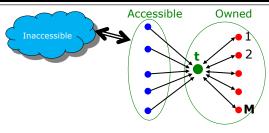
$$y = x + \beta M \left[\frac{\beta y}{M} + \frac{1-\beta}{N} \right] + \frac{1-\beta}{N}$$

$$= x + \beta^2 y + \frac{\beta(1-\beta)M}{N} + \frac{1-\beta}{N}$$

$$y = \frac{x}{1-\beta^2} + c \frac{M}{N} \quad \text{where } c = \frac{\beta}{1+\beta}$$

Very small; ignore Now we solve for **y**

Analysis



N...# pages on the web M...# of pages spammer

- $y = \frac{x}{1-\beta^2} + c\frac{M}{N}$ where $c = \frac{\beta}{1+\beta}$
- For β = 0.85, $1/(1-\beta^2)$ = 3.6
- Multiplier effect for acquired PageRank
- By making M large, we can make y as large as we want

TrustRank: Combating the Web Spam

Combating Spam

- Combating term spam
 - Analyze text using statistical methods
 - Similar to email spam filtering
 - Also useful: Detecting approximate duplicate pages
- Combating link spam
 - Detection and blacklisting of structures that look like spam farms
 - Leads to another war hiding and detecting spam farms
 - TrustRank = topic-specific PageRank with a teleport set of trusted pages
 - Example: .edu domains, similar domains for non-US schools

TrustRank: Idea

- Basic principle: Approximate isolation
 - It is rare for a "good" page to point to a "bad" (spam) page
- Sample a set of seed pages from the web
- Have an oracle (human) to identify the good pages and the spam pages in the seed set
 - Expensive task, so we must make seed set as small as possible

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

25

Trust Propagation

- Call the subset of seed pages that are identified as good the trusted pages
- Perform a topic-sensitive PageRank with teleport set = trusted pages
 - Propagate trust through links:
 - Each page gets a trust value between 0 and 1
- Solution 1: Use a threshold value and mark all pages below the trust threshold as spam

Simple Model: Trust Propagation

- Set trust of each trusted page to 1
- Suppose trust of page p is t_p
 - Page p has a set of out-links o_p
- For each $q \in O_p$, p confers the trust to q
 - $\beta t_p / |o_p|$ for $0 < \beta < 1$
- Trust is additive
 - Trust of p is the sum of the trust conferred on p by all its in-linked pages
- Note similarity to Topic-Specific PageRank
 - Within a scaling factor, TrustRank = PageRank with trusted pages as teleport set

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

37

Why is it a good idea?

- Trust attenuation:
 - The degree of trust conferred by a trusted page decreases with the distance in the graph
- Trust splitting:
 - The larger the number of out-links from a page, the less scrutiny the page author gives each outlink
 - Trust is split across out-links

Picking the Seed Set

- Two conflicting considerations:
 - Human has to inspect each seed page, so seed set must be as small as possible
 - Must ensure every good page gets adequate trust rank, so need make all good pages reachable from seed set by short paths

. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Approaches to Picking Seed Set

- Suppose we want to pick a seed set of k pages
- How to do that?
- (1) PageRank:
 - Pick the top k pages by PageRank
 - Theory is that you can't get a bad page's rank really high
- (2) Use trusted domains whose membership is controlled, like .edu, .mil, .gov

J. Leskovec, A. Raiaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Spam Mass

- In the TrustRank model, we start with good pages and propagate trust
- Complementary view: What fraction of a page's PageRank comes from spam pages?
- In practice, we don't know all the spam pages, so we need to estimate

Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Spam Mass Estimation

Solution 2:

- $lacktriangleq oldsymbol{r_p}$ = PageRank of page $oldsymbol{p}$
- r_p⁺ = PageRank of p with teleport into trusted pages only
- Then: What fraction of a page's PageRank comes from spam pages?

$$r_p^- = r_p - r_p^+$$

- Spam mass of $p = \frac{r_p^-}{r_p}$
 - Pages with high spam mass are spam.

