COMP 345: Data Mining Recommender Systems

Slides Adapted From: www.mmds.org (Mining Massive Datasets)

Example: Recommender Systems

- Customer X
 - Buys Metallica CD
 - Buys Megadeth CD

- Customer Y
 - Does search on Metallica
 - Recommender system suggests Megadeth from data collected about customer X

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.o

From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller: http://www.wired.com/wired/archive/12.10/tail.html

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Types of Recommendations

- Editorial and hand curated
 - List of favorites
 - Lists of "essential" items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, ...

Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Formal Model

- X = set of Customers
- S = set of Items
- Utility function $u: X \times S \rightarrow R$
 - R = set of ratings
 - R is a totally ordered set
 - e.g., **0-5** stars, real number in **[0,1]**

Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

Utility Matrix				
	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- (3) Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

(1) Gathering Ratings

- Explicit
 - Ask people to rate items
 - Doesn't work well in practice people can't be bothered
- Implicit
 - Learn ratings from user actions
 - E.g., purchase implies high rating
 - What about low ratings?

Leskovec, A. Raiaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

(2) Extrapolating Utilities

- Key problem: Utility matrix *U* is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to recommender systems:
 - 1) Content-based
 - 2) Collaborative
 - 3) Latent factor based

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

11

Content-based Recommender Systems

Content-based Recommendations

Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

Plan of Action

Item profiles

Build

Build

Red

Circles

Triangles

User profile

7

Item Profiles

- For each item, create an item profile
- Profile is a set of features
 - Movies: author, title, actor, director,...
 - Images, videos: metadata or tags
 - People: set of friends
- Convenient to think of item profile as a vector
 - One entry per feature (each actor, director, etc...)
 - Vector might be Boolean or real-valued

L Lockeyon A Painraman I Illiman Mining of Macrice Datacete http://www.mmdc.org

User Profiles and Prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item

- Prediction heuristic:
 - Given user profile x and item profile i, estimate

$$u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{\mathbf{x} \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$$

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

16

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

17

Cons: Content-based Approach

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

18