COMP 345: Data Mining More on Recommender Systems

Slides Adapted From: www.mmds.org (Mining Massive Datasets)

Collaborative Filtering

Harnessing quality judgments of other users

Collaborative Filtering

- Consider user **x**
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

3

Similarity Metric

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Consider users x and y with rating vectors \boldsymbol{r}_{x} and \boldsymbol{r}_{v}
- We need a similarity metric sim(x, y)
- Capture intuition that sim(A, B) > sim(A, C)

Option 1: Jaccard Similarity

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- $sim(A,B) = |r_A \cap r_B| / |r_A \cup r_B|$
- sim(A, B) = 1/5; sim(A, C) = 2/4- sim(A, B) < sim(A, C)
- Problem: Ignores ratings values!

5

Option 2: Cosine Similarity

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

• $sim(A, B) = cos(r_A, r_B)$

Example: Cosine Similarity

- $cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$, where • indicates vector dot product, ||d|: the length of vector d
- Ex: Find the similarity between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

$$\begin{aligned} &d_1 \bullet d_2 = 5*3 + 0*0 + 3*2 + 0*0 + 2*1 + 0*1 + 2*1 + 0*0 + 0*1 = 25 \\ &||d_1|| = (5*5 + 0*0 + 3*3 + 0*0 + 2*2 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481 \\ &||d_2|| = (3*3 + 0*0 + 2*2 + 0*0 + 1*1 + 1*1 + 0*0 + 1*1 + 0*0 + 1*1)^{0.5} = (17)^{0.5} &= 4.12 \\ &\cos(d_1, d_2) = 0.94 \end{aligned}$$

7

Option 2: Cosine Similarity

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- $sim(A, B) = cos(r_A, r_B)$
- sim(A, B) = 0.38; sim(A, C) = 0.32- sim(A, B) > sim(A, C), but not by much
- Problem: treats missing ratings as negative

В

Option 3: Centered Cosine

Normalize ratings by subtracting row mean

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
\overline{C}				2	4	5	
D		3					3
	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C				-5/3	1/3	4/3	
D		0					0

Also known as the Pearson Correlation Coefficient

sim(A, B) = cos(rA, rB) = 0.09; sim(A, C) = -0.44

- sim(A, B) > sim(A, C)
- Captures intuition better
 - Missing ratings treated as "average"
 - Handles "tough raters" and "easy raters"

Rating Predictions

From similarity metric to recommendations:

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item s of user x:

$$-r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

$$-r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$
Shorthand:
$$s_{xy} = sim(x, y)$$

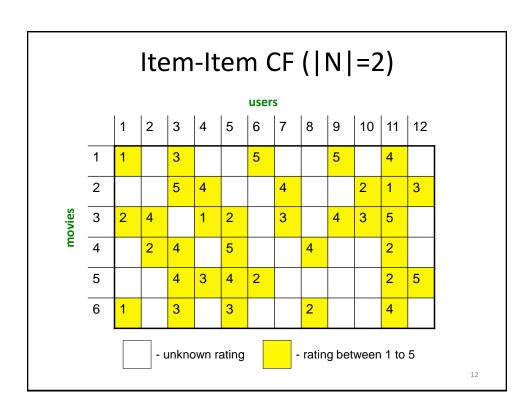
- Other options?
- Many other tricks possible...

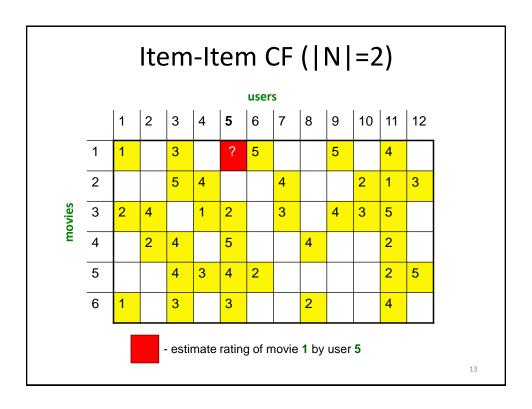
Item-Item Collaborative Filtering

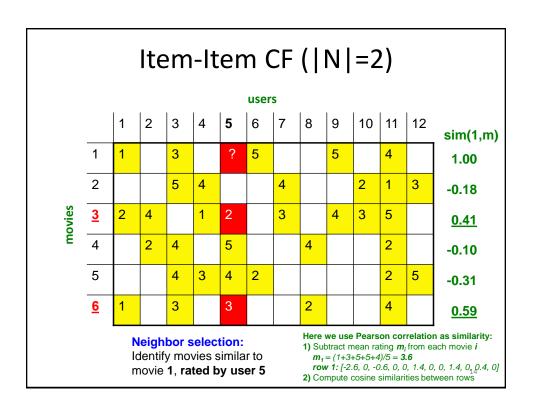
- So far: User-user collaborative filtering
- Another view: Item-item
 - For item *i*, find other similar items
 - Estimate rating for item *i* based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

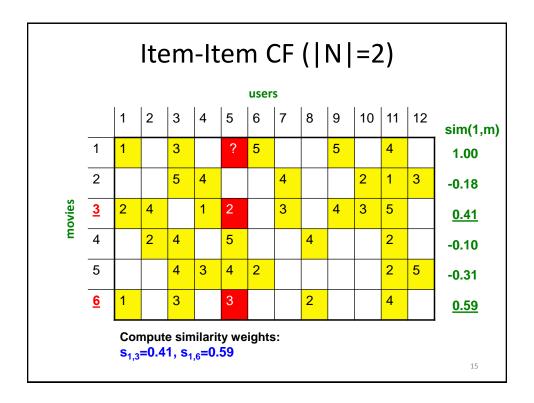
$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

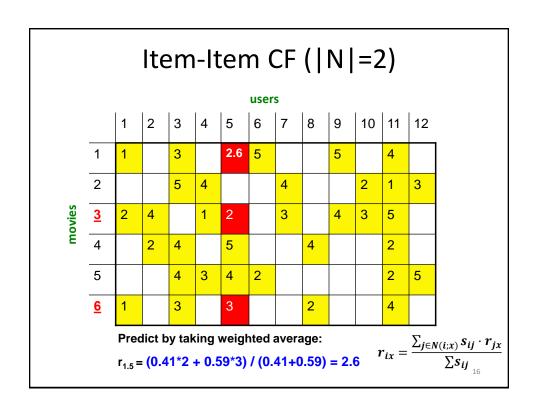
 \mathbf{s}_{ij} ... similarity of items i and j r_{xj} ...rating of user u on item j N(i;x)... set items rated by x similar to i











CF: Common Practice

- Before: $r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$
- Define similarity s_{ij} of items i and j
- Select k nearest neighbors N(i, x)
 - Items most similar to *i*, that were rated by *x*
- Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for r_{xi}

$$b_{xi} = \mu + b_x + b_i$$

- μ = overall mean movie rating
- b_x = rating deviation of user x= $(avg. rating of user x) - \mu$
- b_i = rating deviation of movie i

Item-Item vs. User-User

- In theory, user-user and item-item are dual approaches.
- In practice, item-item outperforms user-user in many use cases.
- Items are "simpler" than users
 - Items belong to a small set of "genres", users have varied tastes.
 - Item Similarity is more meaningful than User Similarity

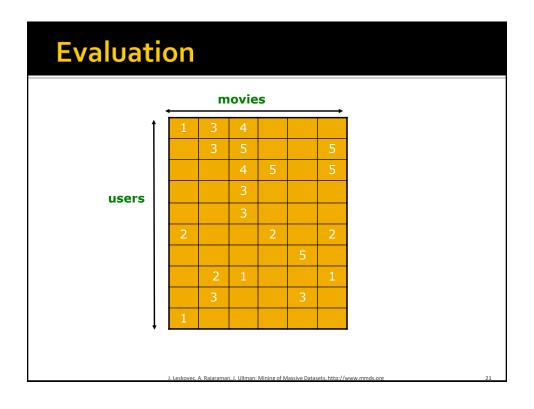
Pros/Cons of Collaborative Filtering

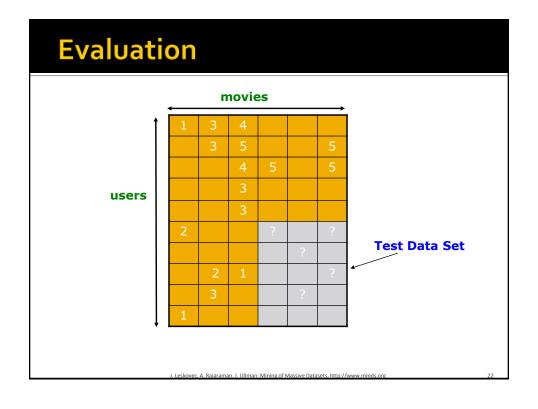
- + Works for any kind of item
 - No feature selection needed
- Cold Start:
 - Need enough users in the system to find a match
- Sparsity:
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items
- First rater:
 - Cannot recommend an item that has not been previously rated
 - New items, Esoteric items
- Popularity bias:
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items

19

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem





Evaluating Predictions

- Compare predictions with known ratings (test set T)
 - Root-mean-square error (RMSE)

$$\sqrt{\frac{\sum_{(x,i)\in T}(r_{xi}-r_{xi}^*)^2}{N}}$$

- where N = |T|
- r_{xi} is predicted rating
- $lacksquare r_{xi}^*$ is the actual rating of $oldsymbol{x}$ on $oldsymbol{i}$

J. Leskovec, A. Rajaraman, J. Ullman; Mining of Massive Datasets, http://www.mmds.org

22

Problems with Error Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others
 - Alterative: precision at top k
 - Percentage of predictions in the user's top k withheld ratings

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org