COMP 345: Data Mining
More on Recommender Systems

Slides Adapted From: www.mmds.org (Mining Massive Datasets)
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The Netflix Prize

Training data
100 million ratings, 480,000 users, 17,770 movies

6 years of data: 2000-2005
Test data

Last few ratings of each user (2.8 million)
Evaluation criterion: Root Mean Square Error (RMSE) =

1 .
m\/z(i,x)eR(rxi — T9i)?
Netflix’s system RMSE: 0.9514
Competition
2,700+ teams
$1 million prize for 10% improvement on Netflix
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The Netflix Utility Matrix R
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Utility Matrix R: Evaluation
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The Netflix Prize

Training data

100 million ratings, 480,000 users, 17,770 movies
6 years of data: 2000-2005
Test data

Last few ratings of each user (2.8 million)
Evaluation criterion: Root Mean Square Error (RMSE) =

1 R
m\/z(i,x)eR(TXi — Tyi)?
Netflix’s system RMSE: 0.9514
Competition
2,700+ teams
$1 million prize for 10% improvement on Netflix
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BellKor Recommender System

The winner of the Netflix Challenge!

Multi-scale modeling of the data:

Combine top level, “regional”

modeling of the data, with y

a refined, local view:
Global: z "\ Factorization

A | N

Global effects

Overall deviations of users/movies ./

| X y

7
| } .
b4 Collaborative

Factorization: filtering

Addressing “regional” effects
Collaborative filtering:
Extract local patterns
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Modeling Local & Global Effects

Global:
Mean movie rating: 3.7 stars
The Sixth Sense is 0.5 stars above avg.

Joe rates 0.2 stars below avg.
= Baseline estimation:
Joe will rate The Sixth Sense 4 stars

Local neighborhood (CF/NN):
Joe didn’t like related movie Signs

= Final estimate:
Joe will rate The Sixth Sense 3.8 stars
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Recap: Collaborative Filtering (CF)

Earliest and most popular collaborative

filtering method

Derive unknown ratings from those of “similar”

movies (item-item variant)

Define similarity measure s; of items i and j

Select k-nearest neighbors, compute the rating
N(i; x): items most similar to i that were rated by x

. ZjeN(i;x) Sij Ty

r. = S;;-.. similarity of items i and j
XI E S r,g---rating of user x on item j
: i ” N(i;x)... set of items similar to

JeN(i:x) item i that were rated by x
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Modeling Local & Global Effects

In practice we get better estimates if we
model deviations:

r.=b +ZieN(i;x)Sii '(rxi _bxj)

r.=D.
Xl Xl
ZjeN(i;x) Sij

baseline estimate for r,;

Problems/Issues:
b,y=pu+b,+b; 1) SernIa'rlty _me'aSt‘Jr'es are “arbitrary”
2) Pairwise similarities neglect
interdependencies among users

N = ovgrall mean rating 3) Taking a weighted average can be
b, = rating deviation of user x tricti

= (avg. rating of user x) — g res r'f: ing
b; = (avg. rating of movie i) — u Solution: Instead of s; use w;; that

we estimate directly from data
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Performance of Various Methods

Global average: 1.1296

User average: 1.0651
Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

CF+Biases+learned weights: 0.91




Recommendations via Optimization

Goal: Make good recommendations

Quantify goodness using RMSE:
Lower RMSE = better recommendations

Want to make good recommendations on items
that user has not yet seen. Can’t really do this!

Let’s set build a system such that it works well
on known (user, item) ratings

And hope the system will also predict well the
unknown ratings
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Latent Factor Models

SVD: A=U VT

“SVD” on Netflix data: R= Q- PT

users factors

1 3 5 & 4 e
" sl a 2 21l 3 5.6 |5 users N
el iz o BEIE 213 |5 11]-2 |3 |5 |2 |5 |8 |-4]3 [14]24] D
Q =~ 8 |7 |5 [14|3 |1 |14af20]|-7|12]|-1]| T
= AIRE 2 o |~ |11f21]3 Q
n 21 -4 |6 |17 |24]9 [-3]4 |8 |7 |-6]| W

4| 3|42 2|5 e -7 121 | -2

1 3 |3 2 4 % 1|7 |3 P

For now let’s assume we can approximate the
rating matrix R as a product of “thin” Q - PT
R has missing entries but let’s ignore that for now!

Basically, we will want the reconstruction error to be small on known
ratings and we don’t care about the values on the missing ones
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Latent Factor Models (e.g., SVD)
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Ratings as Products of Factors

How to estimate the missing rating of
user x for item j? -
users Xt ql px
1 3 Hs 5 4
5| 4 4 2|1 1|3
(%2} - . .
% 2[4 [al2] [3] [4]3]s ~ g qlf pr
= 2| 4 5 4 2 f
i 2|° g; =rowiofQ
Hoe e z ¢ p, = column x of PT
1 -4 2
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-5 .6 5
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Ratings as Products of Factors

items

How to estimate the missing rating of
user x for item i?

users
1| |s H 5 s| [a
5(4 4 213
2 5 ~ g qlf pr
~
4 2
4 2|5
=rowiof Q
HP° ¢ px = column x of PT
users
n & 11 2 3 5 2 -5 .8 4 3 1.4 2.4 -9
% "C)‘ -8 7 5 1.4 =) -1 14 2.9 7 1.2 -1 1.3
= i T
w—l 2.1 4 6 1.7 2.4 9 3 4 8 7 -6 Aa
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Ratings as Products of Factors

items

How to estimate the missing rating of
user x for item i?

users
1 3 5 5 4
5( 4 4 2|1 1|3
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Latent Factor Models
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n n

o f—}% e \
SVD: N —
> VI

A: Input data matrix
U: Left singular vecs

V: Right singular vecs

2: Singular values U
So in our case:
“SVD” on Netflix data: R=Q - PT
A=R/ Q=U, PT=ZVT
Tyi=q; Dx

L Leskovec A, Raiaraman.). Ullman: Mining of Massive Datasets http: mmds.org 19

SVD: More good stuff

SVD gives minimum reconstruction error
(Sum of Squared Errors):
2
NORTAR
ijeA
Note two things:
SSE and RMSE are monotonically related:

RMSE = %\/SSE Great news: SVD is minimizing RMSE

Complication: The sum in SVD error term is over
all entries (no-rating in interpreted as zero-rating).
But our R has missing entries!

LLeskovec L Ullman: Mining of Massive Datgsets, htto: mmds.org
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Latent Factor Models

HETTl

users factors
3 5 5 4 A2
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SVD isn’t defined when entries are missing!
Use specialized methods to find P, Q

_ 2
rIrDHQHZ(i,x)eR(rxi —qi"Px) Pxi = qi * Px
Note:

We don’t require cols of P, Q to be orthogonal/unit length
P, Q map users/movies to a latent space
The most popular model among Netflix contestants
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The Netflix Challenge: 2006-09
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Temporal Biases Of Users

Sudden rise in the

(early 2004)

GUI improvements

Movie age

newer ones

temporal dynamics, KDD '09

L leskovec,

average movie rating
Improvements in Netflix
Meaning of rating changed

Users prefer new movies
without any reasons

Older movies are just
inherently better than

Y. Koren, Collaborative filtering with

baseline so0re

DASEING S00TE.

34 018

0 500 1000 1500 2000 2500
movia ags (days)
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—+—CF (no time bias)
——Basic Latent Factors
m-CF (time bias)
Latent Factors w/ Biases
+ Linear time factors
+ Per-day user biases
+CF

100

Millions of parameters

L Ullman: Mining

of Massive Datasets, http: mmds.org
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Performance of Various Methods

Global average: 1.1296

User average: 1.0651
Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94
Collaborative filtering++: 0.91
Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Standing on June 26 2009

Home Rules Leaderboard Register Update Submit Download

Leaderboa rd Display top 20 leaders.

Rank Team Name Best Score % Improvement Last Submit Time
1 BellKor's Pra: Cha 0.8558 10.05 2009-06-26 18:42:37
Groniome e <-omses
2 P ¥ 0.8582 9.80 2009-06-25 22:15:51
3 0.8590 971 2009-05-13 08:14:09
4 0.8593 9.68 2009-06-12 08:20:24
5 0.8604 956 2009-04-22 05:57:03
6 08613 947 2009-06-23 23:06:52
7 0.8620 940 2009-06-24 07:16:02
8 08634 925 2009-04-22 18:31:32
9 0.8638 921 2009-06-26 23:18:13
10 0.8638 221 2009-06-27 00:55:55
1 08638 921 2009-06-27 01:06:43
12 0.8639 9.20 2009-06-26 13:49:04
13 xiangliang 0.8639 9.20 2009-06-26 07:47:34
1 H H 13 ”
June 26t submission triggers 30-day “last call
Lleskovec Raigraman, L Ullman: Miging of Massive Datasets hittos mmds.org 25
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The Last 30 Days

Ensemble team formed
Group of other teams on leaderboard forms a new team
Relies on combining their models
Quickly also get a qualifying score over 10%

BellKor
Continue to get small improvements in their scores
Realize that they are in direct competition with

Strategy
Both teams carefully monitoring the leaderboard

Only sure way to check for improvement is to submit a set
of predictions
This alerts the other team of your latest score

L Leskovec A, Raiaraman.). Ullman: Mining of Massive Datasets http: mmds.org 2

24 Hours from the Deadline

Submissions limited to 1 a day
Only 1 final submission could be made in the last 24h

24 hours before deadline...

BellKor team member in Austria notices (by chance) that
Ensemble posts a score that is slightly better than BellKor’s

Frantic last 24 hours for both teams
Much computer time on final optimization

Carefully calibrated to end about an hour before deadline
Final submissions

BellKor submits a little early (on purpose), 40 mins before
deadline

Ensemble submits their final entry 20 mins later
....and everyone waits....

LLeskovec L Ullman: Mining of Massive Datgsets, htto: mmds.org 2
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Netflix

Home Rules Leaderboard Update Download

Leaderboard Showing Test Score. Click here to show quiz score

Display top [ 20 % | leaders.

Team Name Best Test Score % Improvement Best Submit Time

r B N B N § B N |
BellKor's Pragmatic Chaos 0.8567 10.06 2009-07-26 B:28
The Ensemble 0.8567 10.06 2009-07-26 8:22
Grand Prize Team AU NN N G U . .
Opera Solutions and Vandelay United 0 8 9.84 2008-07-10 01:12:31
Vandelay Industries | 0.8591 981 2009-07-10 00:32:20
PragmaticTheory 0.8594 77 2009-06-24 12:06:56
BellKor in BigChaos 0.8601 970 2009-05-13 4.09
Dace 0.8612 9.59 2009-07-24 17:18:43
Feeds2 0.8622 948 2009-07-1213:11:51
BigChaos 0.8623 947 2009-04-07 12:33:59
Opera Solutions 0.8623 947 2009-07-24 00:34.07
BellKor 0.8624 9.46 2009-07-26 17:19:11

xlangliang 0.8642 927 2009-07-15 14:53:22
Gravity 0.8643 9.26 2009-04-22 18:31:32
Ces 0.8651 9.18 2009-06-21 19:24:53
Invisible Ideas 0.8653 9.15 2009-07-15 156:53.04
Justa guyin a garage 0.8662 9.06 2009-05-24 10:02:54
J Dennis Su 0.8666 9.02 2009-03-07 17:16:17
Craig Carmichael 0.8666 9.02 2009-07-25 16:00:54
acmehill 0.8668 9.00 2009-03-21 16:20:50

LlcikovaC A Rl LUlmaniVining.of Massive Datasels mmds.org

Bel‘.\in':i E’a{]nnnc (haos $ 1,000,001
ONE MILLION r)(’/I()l)
con The Netflix Prize
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Current Netflix Recommendations

“This is how Netflix’s secret recommendation
system works”
Article in Wired Sept/Oct. 2018 Issue
Netflix is constantly collecting data on its users
A/B Tests (~250 tests per year)
Presents users with two slightly different experiences
to see how they respond
Landing Cards —images shown as you scroll
through shows
Recommended Shows — based on viewing history

| i

Other interesting reading

“The Netflix Recommender System: Algorithms,
Business Value, and Innovation” by Carlos A. Gomez-
Uribe and Neil Hunt, Netflix, Inc. ACM Transactions on
Management Information Systems, Vol. 6, No. 4,
Article 13, Publication date: December 2015.

train x
evaluate

models models A/B ‘
Offline test
rollout

“Qy generate M”
hypotheses

11/26/2018

16



