
9/11/2018

1

COMP 345: Data Mining
Mining Frequent Patterns, Associations

and Correlations

1

Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei
Data Mining: Concepts and Techniques, 3rd ed.

2

Reminders

• Assignment 2 has been assigned
– details on Course Website

– Due Wed. Sept. 12th/Thurs. Sept. 13th at beginning of class

• Install WEKA by Tuesday, Sept. 11th.
– Will need to bring laptops to class on Wed. Sept.

12th/Thurs. Sept. 13th – will be using WEKA

9/11/2018

2

3

What Is Frequent Pattern Analysis?

• Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.)

that occurs frequently in a data set

• First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of

frequent itemsets and association rule mining

• Motivation: Finding inherent regularities in data

– What products were often purchased together?— Beer and diapers?!

– What are the subsequent purchases after buying a PC?

– What kinds of DNA are sensitive to this new drug?

– Can we automatically classify web documents?

• Applications

– Basket data analysis, cross-marketing, catalog design, sale campaign

analysis, Web log (click stream) analysis, and DNA sequence analysis.

4

Basic Concepts: Frequent Patterns

• itemset: A set of one or more items

• k-itemset X = {x1, …, xk}

• (absolute) support, or, support
count of X: Frequency or
occurrence of an itemset X

• (relative) support, s, is the fraction
of transactions that contains X (i.e.,
the probability that a transaction
contains X)

• An itemset X is frequent if X’s
support is no less than a minsup
threshold

Customer

buys diaper

Customer

buys both

Customer

buys beer

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

9/11/2018

3

5

Basic Concepts: Association Rules

Find all the rules X  Y with minimum
support and confidence

– support, s, probability that a
transaction contains X  Y

– confidence, c, conditional
probability that a transaction
having X also contains Y

Let minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3,
{Beer, Diaper}:3

Association rules: (many more!)
 Beer  Diaper (60%, 100%)
 Diaper  Beer (60%, 75%)

Customer

buys

diaper

Customer

buys both

Customer

buys beer

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

6

Closed Patterns and Max-Patterns

• A long pattern contains a combinatorial number of sub-
patterns, e.g., {a1, …, a100} contains (100

1) + (100
2) + … + (1

1
0

0
0

0) =
2100 – 1 = 1.27*1030 sub-patterns!

• Solution: Mine closed patterns and max-patterns instead

• An itemset X is closed if X is frequent and there exists no super-
pattern Y כ X, with the same support as X (proposed by
Pasquier, et al. @ ICDT’99)

• An itemset X is a max-pattern if X is frequent and there exists
no frequent super-pattern Y כ X (proposed by Bayardo @
SIGMOD’98)

• Closed pattern is a lossless compression of freq. patterns

– Reducing the # of patterns and rules

9/11/2018

4

7

Closed Patterns and Max-Patterns

• Exercise: Suppose a DB contains only two transactions

– <a1, …, a100>, <a1, …, a50>

– Let min_sup = 1

• What is the set of closed itemset?

– {a1, …, a100}: 1

– {a1, …, a50}: 2

• What is the set of max-pattern?

– {a1, …, a100}: 1

• What is the set of all patterns?

– {a1}: 2, …, {a1, a2}: 2, …, {a1, a51}: 1, …, {a1, a2, …, a100}: 1

– A big number: 2100 - 1

8

The Downward Closure Property and Scalable
Mining Methods

• The downward closure property of frequent patterns

– Any subset of a frequent itemset must be frequent

– If {beer, diaper, nuts} is frequent, so is {beer, diaper}

– i.e., every transaction having {beer, diaper, nuts} also contains
{beer, diaper}

• Scalable mining methods: Three major approaches

– Apriori (Agrawal & Srikant@VLDB’94)

– Freq. pattern growth (FPgrowth—Han, Pei & Yin
@SIGMOD’00)

– Vertical data format approach (Charm—Zaki & Hsiao
@SDM’02)

9/11/2018

5

9

Apriori: A Candidate Generation & Test Approach

• Apriori pruning principle: If there is any itemset which is

infrequent, its superset should not be generated/tested!

(Agrawal & Srikant @VLDB’94, Mannila, et al. @ KDD’ 94)

• Method:

– Initially, scan DB once to get frequent 1-itemset

– Generate length (k+1) candidate itemsets from length k

frequent itemsets

– Test the candidates against DB

– Terminate when no frequent or candidate set can be

generated

10

The Apriori Algorithm—An Example

Database

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2

Min_Support = 2

9/11/2018

6

11

The Apriori Algorithm (Pseudo-Code)

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 1; Lk !=; k++) do begin

Ck+1 = candidates generated from Lk;

for each transaction t in database do

increment the count of all candidates in Ck+1 that are

contained in t

Lk+1 = candidates in Ck+1 with min_support

end

returnk Lk;

12

Implementation of Apriori

• How to generate candidates?

– Step 1: self-joining Lk

– Step 2: pruning

• Example of Candidate-generation

– L3={abc, abd, acd, ace, bcd}

– Self-joining: L3*L3

• abcd from abc and abd

• acde from acd and ace

– Pruning:

• acde is removed because ade is not in L3

– C4 = {abcd}

9/11/2018

7

13

Further Improvement of the Apriori Method

• Major computational challenges

– Multiple scans of transaction database

– Huge number of candidates

– Tedious workload of support counting for candidates

• Improving Apriori: general ideas

– Reduce passes of transaction database scans

– Shrink number of candidates

– Facilitate support counting of candidates

14

Apriori Example
There’s a haunted corn maze every Fall that sells lots of fun things. Items that can be
purchased are:
1. Hot Cider, 2. Pumpkin, 3. Gourd, 4. Hayride, 5. Maze Tour

You are given the transaction data for a morning of sales. (Items referred to by #).

Assuming that minimum support = 2/9 (.222) and minimum confidence is 7/9 (.777)

1. Apply the Apriori algorithm to the dataset and identify all frequent k-itemsets

2. Find all strong association rules of the form X ^ Y -> Z

Sales ID List of Item
IDs

Sales ID List of item
IDs

Order 1 1, 2, 5 Order 6 2, 3

Order 2 2, 4 Order 7 1, 3

Order 3 2, 3 Order 8 1, 2, 3, 5

Order 4 1, 2, 4 Order 9 1, 2, 3

Order 5 1, 3

9/11/2018

8

Partition: Scan Database Only Twice

• Any itemset that is potentially frequent in DB must be frequent
in at least one of the partitions of DB

– Scan 1: partition database and find local frequent patterns

– Scan 2: consolidate global frequent patterns

• A. Savasere, E. Omiecinski and S. Navathe, VLDB’95

DB1 DB2 DBk+ = DB++

sup1(i) < σDB1 sup2(i) < σDB2 supk(i) < σDBk sup(i) < σDB
15

16

DHP: Reduce the Number of Candidates

• A k-itemset whose corresponding hashing bucket count is below the threshold

cannot be frequent

– Candidates: a, b, c, d, e

– Hash entries

• {ab, ad, ae}

• {bd, be, de}

• …

– Frequent 1-itemset: a, b, d, e

– ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below

support threshold

• J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining

association rules. SIGMOD’95

– DHP – Direct Hashing and Pruning

count itemsets

35 {ab, ad, ae}

{yz, qs, wt}

88

102

.

.

.

{bd, be, de}

.

.

.

Hash Table

9/11/2018

9

17

Sampling for Frequent Patterns

• Select a sample of original database, mine frequent patterns

within sample using Apriori

• Scan database once to verify frequent itemsets found in

sample, only borders of closure of frequent patterns are

checked

– Example: check abcd instead of ab, ac, …, etc.

• Scan database again to find missed frequent patterns

• H. Toivonen. Sampling large databases for association rules. In

VLDB’96

