COMP 345: Data Mining Mining Frequent Patterns, Associations and Correlations

Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

1

Reminders

- Assignment 3 due Wed. Sept. 19th /Thurs. Sept. 20th
- Group Project Proposals due Monday, Oct. 1st/Tues. Oct. 2nd

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

3

Apriori Example

There's a haunted corn maze every Fall that sells lots of fun things. Items that can be purchased are:

1. Hot Cider, 2. Pumpkin, 3. Gourd, 4. Hayride, 5. Maze Tour

You are given the transaction data for a morning of sales. (Items referred to by #).

Sales ID	List of Item IDs	Sales ID	List of item IDs
Order 1	1, 2, 5	Order 6	2, 3
Order 2	2, 4	Order 7	1, 3
Order 3	2, 3	Order 8	1, 2, 3, 5
Order 4	1, 2, 4	Order 9	1, 2, 3
Order 5	1, 3		

Assuming that minimum support = 2/9 (.222) and minimum confidence is 7/9 (.777)

- 1. Apply the Apriori algorithm to the dataset and identify *all* frequent k-itemsets
- 2. Find all **strong** association rules of the form X ^ Y -> Z

Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

- · Bottlenecks of the Apriori approach
 - Breadth-first (i.e., level-wise) search
 - Candidate generation and test
 - Often generates a huge number of candidates
- The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD' 00)
 - Depth-first search
 - Avoid explicit candidate generation
- Major philosophy: Grow long patterns from short ones using local frequent items only
 - "abc" is a frequent pattern
 - Get all transactions having "abc", i.e., project DB on abc: DB|abc
 - "d" is a local frequent item in DB|abc → abcd is a frequent pattern

5

Construct FP-tree from a Transaction Database

	TID Items bought (order 100 {f, a, c, d, g, i, m, p} 200 {a, b, c, f, l, m, o} 300 {b, f, h, j, o, w} 400 {b, c, k, s, p} 500 {a, f, c, e, l, p, m, n}	$\{f, c, a, m, p\}$ $\{f, c, a, b, m\}$ $\{f, b\}$ $\{c, b, p\}$	min_support = 3
1.	Scan DB once, find frequent 1-itemset (single item pattern)	Header Table Item frequency head f 4 c 4	
2.	Sort frequent items in frequency descending order, f-list	a 3 b 3 m 3	a:3 p:1
3.	Scan DB again, construct FP-tree	$\frac{p}{t} = \text{f-c-a-b-m-p}$	m:2 b:1' p:2 m:1

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list = f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - **—** ...
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

7

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern base

Conditional pattern bases

<u>item</u>	cond. pattern base
\boldsymbol{c}	f:3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
n	fcam:2. cb:1

From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Benefits of the FP-tree Structure

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not counting node-links and the *count* field)

FP-Growth Example

We're having a picnic and you're asked to pick up a couple of items to bring along. Items are Hot Dogs, Buns, Ketchup, Chips, and Coke. Here are the transactions from each purchase

Transaction ID	List of Item IDs	
T1	HotDogs, Buns, Ketchup	
T2	HotDogs, Buns	
T3	HotDogs, Coke, Chips	
T4	Chips, Coke	
T5	Chips, Ketchup	
Т6	HotDogs, Coke, Chips	

Assuming that minimum support = 33.3% (2) and minimum confidence is 60%

- 1. Apply the FP-growth algorithm to the dataset and identify *all* frequent k-itemsets
- 2. Find all strong association rules.

Interestingness Measure: Correlations (Lift)

- play basketball ⇒ eat cereal [40%, 66.7%] is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball ⇒ not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89$$

$$lift(B, \neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

13

Are *lift* and χ^2 Good Measures of Correlation?

- "Buy walnuts \Rightarrow buy milk [1%, 80%]" is misleading if 85% of customers buy
- Support and confidence are not good to indicate correlations
- Over 20 interestingness measures have been proposed (see Tan, Kumar, Sritastava @KDD'02)
- Which are good ones?

symbol	measure	range	formula
φ	φ-coefficient	-11	P(A,B)-P(A)P(B)
	· '		$\sqrt{P(A)P(B)(1-P(A))(1-P(B))}$ $P(A,B)P(\overline{A},\overline{B})-P(A,\overline{B})P(\overline{A},B)$
Q	Yule's Q	-11	$\frac{P(A,B)P(\overline{A},B)-P(A,B)P(\overline{A},B)}{P(A,B)P(\overline{A},B)+P(A,\overline{B})P(\overline{A},B)}$
V V	Yule's Y	-1 1	$\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}$
Y	Yule's Y	-11	$\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}$
k	Cohen's	-1 1	$P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})$
PS	Piatetsky-Shapiro's	-0.25 0.25	$\frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{P(A,B)-P(A)P(B)}$
F	Certainty factor	-1 1	$\max\left(\frac{P(B A)-P(B)}{1-P(B)}, \frac{P(A B)-P(A)}{1-P(A)}\right)$
AV	added value	-0.5 1	$\max(P(B A) - P(B), P(A B) - P(A))$
K	Klosgen's Q	-0.33 0.38	$\sqrt{P(A, B)} \max(P(B A) - P(B), P(A B) - P(A))$
g	Goodman-kruskal's	0 1	$\frac{\Sigma_j \max_k P(A_j, B_k) + \Sigma_k \max_j P(A_j, B_k) - \max_j P(A_j) - \max_k P(B_k)}{2 - \max_j P(A_j) - \max_k P(B_k)}$
			$\Sigma_i \Sigma_j P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i)P(B_j)}$
M	Mutual Information	0 1	$\frac{P(A_i)P(B_J)}{\min(-\Sigma_i P(A_i) \log P(A_i) \log P(A_i), -\Sigma_i P(B_i) \log P(B_i) \log P(B_i))}$
J	J-Measure	0 1	$\max(P(A, B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B} A)}{P(\overline{B})}))$
			$P(A, B) \log \left(\frac{P(A B)}{P(A)} \right) + P(\overline{A}B) \log \left(\frac{P(\overline{A} B)}{P(\overline{A})} \right)$
G	Gini index	01	$\max_{P(A)}(P(A) P(B A)^2 + P(\overline{B} A)^2) + P(\overline{A} P(B \overline{A})^2 + P(\overline{B} \overline{A})^2) - P(B)^2 - P(\overline{B})^2,$
G	Gilli ilidex	01	$\max(P(A)[P(B A)^{-} + P(B A)^{-}] + P(A[P(B A)^{-} + P(B A)^{-}] - P(B)^{-} - P(B)^{-},$ $P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B}[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}] - P(A)^{2} - P(\overline{A})^{2})$
8	support	01	$P(B) P(A B)^* + P(A B)^* + P(B P(A B)^* + P(A B)^* - P(A)^* - P(A)^*)$ P(A, B)
c c	confidence	01	max(P(B A), P(A B))
L		01	$\max(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2})$
	Laplace		$\max(\frac{NP(A)+2}{NP(B)+2}, \frac{NP(B)+2}{NP(B)+2})$
IS	Cosine	0 1	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
γ	coherence(Jaccard)	01	P(A,B) $P(A)+P(B)-P(A,B)$
ά	all_confidence	0 1	P(A,B)
			$\frac{\max(P(A),P(B))}{P(A,B)P(\overline{A},\overline{B})}$
0	odds ratio	0 ∞	$P(\overline{A} B)P(A \overline{B})$
V	Conviction	0.5 ∞	$\max(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})})$
λ	lift	0∞	P(A,B)
			$P(A)P(B) = P(A)P(B) = P(\overline{A})P(\overline{B})$ $1 = P(A)P(B) = P(\overline{A})P(\overline{B})$
S	Collective strength	0 ∞	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
χ^2	χ^2	0 ∞	$\sum_{i} \frac{(P(A_{i})-E_{i})^{2}}{E_{i}}$
			14

Summary

- Basic concepts: association rules, supportconfident framework, closed and max-patterns
- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Projection-based (FP-growth)
- Which patterns are interesting?
 - Pattern evaluation methods