COMP 345: Data Mining More Classification Basics

Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Reminders

- · Assignment 4 has been assigned
 - details on Course Website
 - Due Mon. Oct. 1st /Tues. Oct. 2nd at beginning of class
- Group Project Proposal
 - Due Mon. Oct. 1st /Tues. Oct. 2nd at beginning of class
- Midterm Exam
 - Wed. Oct. 3rd /Thurs. Oct. 4th
 - You may bring a 1 page (front & back) 8.5" x 11" sheet of paper with whatever you want on it
 - You may also bring a calculator

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)	
cancer = yes	90	210	300	30.00 (sensitivity	
cancer = no	140	9560	9700	98.56 (specificity)	
Total	230	9770	10000	96.50 (accuracy)	

Precision = 90/230 = 39.13% Recall = 90/300 = 30.00%

Evaluating Classifier Accuracy: Holdout

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- Random subsampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained from each iteration

Evaluating Classifier Accuracy: Cross-Validation Methods

- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At i-th iteration, use D_i as test set and others as training set
 - <u>Leave-one-out</u>: k folds where k = # of tuples, for small sized data
 - *Stratified cross-validation* = Recommended
 - folds are stratified so that class distribution in each fold is approximately the same as that in the initial data

5

Evaluating Classifier Accuracy: Bootstrap

- Bootstrap
 - Works well with small data sets
 - Samples the given training tuples uniformly with replacement
 - i.e., each time a tuple is selected, it is equally likely to be selected again and re-added to the training set
- Several bootstrap methods, and a common one is .632 bootstrap
 - A data set with d tuples is sampled d times, with replacement, resulting in a training set of d samples. The data tuples that did not make it into the training set end up forming the test set. About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since $(1-1/d)^d \approx e^{-1} = 0.368$)
 - Repeat the sampling procedure k times, overall accuracy of the model:

$$Acc(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test_set} + 0.368 \times Acc(M_i)_{train_set})$$

Estimating Confidence Intervals: Classifier Models M₁ vs. M₂

- Suppose we have 2 classifiers, M₁ and M₂, which one is better?
- Use 10-fold cross-validation to obtain $\overline{err}(M_1)$ and $\overline{err}(M_2)$
- These mean error rates are just estimates of error on the true population of future data cases
- What if the difference between the 2 error rates is just attributed to chance?
 - Use a test of statistical significance
 - Obtain confidence limits for our error estimates

7

Estimating Confidence Intervals: Null Hypothesis

- Perform 10-fold cross-validation
- Assume samples follow a t distribution with k-1 degrees of freedom (here, k=10)
- Use t-test (or Student's t-test)
- Null Hypothesis: M₁ & M₂ are the same
- If we can reject null hypothesis, then
 - we conclude that the difference between M₁ & M₂ is statistically significant
 - Chose model with lower error rate

Estimating Confidence Intervals: t-test

- If only 1 test set available: pairwise comparison
 - For ith round of 10-fold cross-validation, the same cross partitioning is used to obtain $err(M_1)_i$ and $err(M_2)_i$
 - Average over 10 rounds to get $\overline{err}(M_1)$ and $\overline{err}(M_2)$ **t-test** computes **t-statistic** with k-1 **degrees of freedom:**

$$t = rac{\overline{err}(M_1) - \overline{err}(M_2)}{\sqrt{var(M_1 - M_2)/k}}$$
 where

$$var(M_1 - M_2) = \frac{1}{k} \sum_{i=1}^{k} \left[err(M_1)_i - err(M_2)_i - (\overline{err}(M_1) - \overline{err}(M_2)) \right]^2$$

If two test sets available: use non-paired t-test

where
$$var(M_1-M_2)=\sqrt{rac{var(M_1)}{k_1}+rac{var(M_2)}{k_2}},$$

where $k_1 \& k_2$ are # of cross-validation samples used for $M_1 \& M_{2t}$ resp.

9

Estimating Confidence Intervals:Table for t-distribution

- Symmetric
- Significance level, e.g., sig = 0.05 or 5% means M₁ & M₂ are significantly different for 95% of population
- Confidence limitz = sig/2

Table for t-distribut	tion
-----------------------	------

at/p	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0005				
1	0.324920	1.000000	3.077684	6.313752	12.70620	31.82052	63.65674	636.6192				
2	0.288675	0.816497	1.885618	2.919986	4.30265	6.96456	9.92484	31.5991				
3	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	5.84091	12.9240				
4	0.270722	0.740697	1.533206	2.131847	2.77645	3.74695	4.60409	8.6103				
5	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	4.03214	6.8688				
6	0.264835	0.717558	1.439756	1.943180	2.44691	3.14267	3.70743	5.9588				
7	0.263167	0.711142	1.414924	1.894579	2.36462	2.99795	3.49948	5.4079				
8	0.261921	0.706387	1.396815	1.859548	2.30600	2.89646	3.35539	5.0413				
9	0.260955	0.702722	1.383029	1.833113	2.26216	2.82144	3.24984	4.7809				
10	0.260185	0.699812	1.372184	1.812461	2.22814	2.76377	3.16927	4.5869				
30	0.255605	0.682756	1.310415	1.697261	2.04227	2.45726	2.75000	3.6460				
z	0.253347	0.674490	1.281552	1.644854	1.95996	2.32635	2.57583	3.2905				
CI		,———	80%	90%	95%	98%	99%	99.9%				

Estimating Confidence Intervals: Statistical Significance

- Are M₁ & M₂ significantly different?
 - Compute t. Select significance level (e.g. sig = 5%)
 - Consult table for t-distribution: Find t value corresponding to k-1 degrees of freedom (here, 9)
 - t-distribution is symmetric: typically upper % points of distribution shown → look up value for confidence limit z=sig/2 (here, 0.025)
 - If t > z or t < -z, then t value lies in rejection region:</p>
 - Reject null hypothesis that mean error rates of M₁ & M₂ are same
 - Conclude: <u>statistically significant</u> difference between M₁ & M₂
 - Otherwise, conclude that any difference is chance

11

Model Selection: ROC Curves (Receiver Operating Characteristics)

Issues Affecting Model Selection

Accuracy

- classifier accuracy: predicting class label

Speed

- time to construct the model (training time)
- time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

13

Ensemble Methods: Increasing the Accuracy

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, M_1 , M_2 , ..., M_k , with the aim of creating an improved model M^*
- Popular ensemble methods
 - Bagging: averaging the prediction over a collection of classifiers
 - Boosting: weighted vote with a collection of classifiers
 - Ensemble: combining a set of heterogeneous classifiers

Bagging: Bootstrap Aggregation

- Analogy: Diagnosis based on multiple doctors' majority vote
- Training
 - Given a set D of d tuples, at each iteration i, a training set D_i of d tuples is sampled with replacement from D (i.e., bootstrap)
 - A classifier model M_i is learned for each training set D_i
- Classification: classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - The bagged classifier M* counts the votes and assigns the class with the most votes to X
- Prediction: can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple
- Accuracy
 - Often significantly better than a single classifier derived from D
 - For noisy data: not considerably worse, more robust
 - Proved improved accuracy in prediction

15

Boosting

- Analogy: Consult several doctors, based on a combination of weighted diagnoses—weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - Weights are assigned to each training tuple
 - A series of k classifiers is iteratively learned
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1}, to pay more attention to the training tuples that were misclassified by M_i
 - The final M* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy
- Boosting algorithm can be extended for numeric prediction
- Comparing with bagging: Boosting tends to have greater accuracy, but it also risks overfitting the model to misclassified data

Random Forest (Breiman 2001)

- · Random Forest:
 - Each classifier in the ensemble is a decision tree classifier and is generated using a random selection of attributes at each node to determine the split
 - During classification, each tree votes and the most popular class is returned
- Two Methods to construct Random Forest:
 - Forest-RI (random input selection): Randomly select, at each node, F
 attributes as candidates for the split at the node. The CART methodology
 is used to grow the trees to maximum size
 - Forest-RC (random linear combinations): Creates new attributes (or features) that are a linear combination of the existing attributes (reduces the correlation between individual classifiers)
- Comparable in accuracy to boosting, but more robust to errors and outliers
- Insensitive to the number of attributes selected for consideration at each split, and faster than bagging or boosting

17

Classification of Class-Imbalanced Data Sets

- Class-imbalance problem: Rare positive example but numerous negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.
- Traditional methods assume a balanced distribution of classes and equal error costs: not suitable for class-imbalanced data
- Typical methods for imbalance data in 2-class classification:
 - Oversampling: re-sampling of data from positive class
 - Under-sampling: randomly eliminate tuples from negative class
 - Threshold-moving: moves the decision threshold, t, so that the rare class tuples are easier to classify, and hence, less chance of costly false negative errors
- Still difficult for class imbalance problem on multiclass tasks

Summary (I)

- Classification is a form of data analysis that extracts models describing important data classes.
- Effective and scalable methods have been developed for decision tree induction, Naive Bayesian classification, rule-based classification, and many other classification methods.
- Evaluation metrics include: accuracy, sensitivity, specificity, precision, recall, F measure, and F_β measure.
- Stratified k-fold cross-validation is recommended for accuracy estimation. Bagging and boosting can be used to increase overall accuracy by learning and combining a series of individual models.

19

Summary (II)

- Significance tests and ROC curves are useful for model selection.
- There have been numerous comparisons of the different classification methods; the matter remains a research topic
- No single method has been found to be superior over all others for all data sets
- Issues such as accuracy, training time, robustness, scalability, and interpretability must be considered and can involve tradeoffs, further complicating the quest for an overall superior method