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With the wide spread use of mobile phones, cellular mobile big data is becoming an important resource that
provides a wealth of information with almost no cost. However, the data generally suffers from relatively
high spatial granularity, limiting the scope of its application. In this article, we consider, for the first time,
the utility of actual mobile big data for map matching allowing for “microscopic” level traffic analysis. The
state-of-the-art in map matching generally targets GPS data, which provides far denser sampling and higher
location resolution than the mobile data. Our approach extends the typical Hidden-Markov model used in
map matching to accommodate for highly sparse location trajectories, exploit the large mobile data volume to
learn the model parameters, and exploit the sparsity of the data to provide for real-time Viterbi processing.
We study an actual, anonymised mobile trajectories data set of the city of Dakar, Senegal, spanning a year,
and generate a corresponding road-level traffic density, at an hourly granularity, for each mobile trajectory.
We observed a relatively high correlation between the generated traffic intensities and corresponding values
obtained by the gravity and equilibrium models typically used in mobility analysis, indicating the utility of
the approach as an alternative means for traffic analysis.
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1. INTRODUCTION

According to the International Telecommunication Union, mobile phones have reached
an unprecedented global penetration level of 95.5%, and 90.2% for the developing
world [itu 2014]. Being mobile, and personal, the phones provide a wealth of big
data information, enabling urban mobility sensing at virtually no cost at the global
level [Calabrese et al. 2014; Naboulsi et al. 2015].

Map-matching is an important problem for intelligent transportation systems; its
applications include traffic routing, network analysis, control, and general network
improvements [Zheng 2015]. Performing map-matching on mobile big data has five
main issues:

(1) Non-uniform, sparse time, and space sampling: The non-uniformity and sparsity
happen as a sample is determined when a user receives/initiates a call/SMS, which
is highly irregular and infrequent (e.g., less than 20% of the users generate these
samples in an hour, for the Senegal D4D dataset [de Montjoye et al. 2014]).

(2) Large location error: This is mainly due to only recording the cell tower ID with
each sample. The location within the tower coverage zone cannot be determined,
and is usually in kilometer scale.

(3) Noisy data: The data suffers from oscillations among cell towers, as many factors
affect the choice of cell tower including cell network load and environment.

(4) Large-data volume: The data requires high computational power. For example, for
the Senegal D4D dataset, there is in the order of 100 thousands trips per day for
300 thousands users, for one year; presenting a total of 300 million trips for the
whole year.

(5) No trip meta-data: The data does not include information about which samples
identify trips start/stop points.

Existing map-matching methods generally rely on continuity for modelling the cor-
responding road network transitions among samples. This is generally exploited by
the Hidden-Markov model (HMM) [Newson and Krumm 2009]. Such continuity is lost
with increasing the sampling duration; therefore, low sampling techniques usually rely
on some extra information, such as signal strength [Thiagarajan et al. 2011; Becker
et al. 2011], map hints [Mohamed et al. 2014, 2016], and history [Zheng et al. 2012],
while assuming uniform sampling (raw or interpolated samples). Schulze et al. [2015]
consider both low sampling and non-uniform sampling for a mobile data set of 2,249
traces. However, the samples are more frequent than a typical mobile dataset, as it
includes handover events. Also, that initial work does not consider time optimizing the
map-matching process, resulting in more than 5s processing for a single trajectory.

Map-matching mobile big data is, therefore, a highly unexplored area in the lit-
erature; existing methods are generally trajectory oriented, where map-matching is
done on a single trajectory level, and do not consider the data across trajectories to
adapt the mapping. In this article, we attempt to consider mining big data to improve
map-matching. In particular, we extend the HMM, so it adapts to the aggregate flow
patterns in the mobile big data. Moreover, we consider only “exit” road segments (roads
at cell boundaries) to represent states, therefore, providing for the sought continuity
for the HMM and spatial regularity, while decreasing the state space. Additionally,
we limit transitions among exit segments that span a fixed number of zones; thereby
accommodating for a practical number of missed observations, while decreasing the
number of transitions among the states.

Finally, we optimize the Viterbi decoding algorithm exploiting the sparsity in terms
of emissions and transitions per state. The optimization delays writing a corresponding
zero score until it is read in a later Viterbi stage, which is generally infrequent due to
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the limited connectivity, thereby avoiding most of the zero write operations. Therefore,
the complexity of the Viterbi decoding algorithm reduces to linear time and space
complexities instead of the typical quadratic complexities. This provides for better
scalability, which is especially important for processing big mobile data.

In summary, the article has the following contributions:

—Propose an adaptive probabilistic HMM-based method that utilizes trip antenna
coverage zones to learn the road-level trajectories patterns (model parameters) and
infer corresponding roads for a given trip antenna sequence (states).

—Exploit the sparsity in model parameters for a typical mobile call data record (CDR)
data set and propose a fast, real-time Viterbi decoder with linear time and space
complexities.

—Implement our proposed approach and evaluate its accuracy using real challenging
positioning (GPS and Cellular-based) data traces to assess the accuracy of individual
trajectories.

—Validate the method utilizing both gravity and equilibrium transportation models, to
check the quality of extracted origin/destination (OD) trips and routes, respectively.
The validation is done over a real CDR data set provided by Orange through the
Data for Development (D4D) challenge, for the city of Dakar, Senegal [de Montjoye
et al. 2014].

The rest of the article is organized as follows: Related work is presented in
Section 2; Section 3 analyses the set of considered mobile phone CDRs; Section 4
presents our map-matching/traffic monitoring system based on HMM; Section 5 dis-
cusses our performance optimization that exploits sparsity in HMM’s transition proba-
bilities to achieve linear time and space complexities; Section 6 provides experimental
validation, including both GPS subsampled trajectories and gravity/equilibrium mod-
els; Finally, Section 7 concludes the article and discusses future work.

2. RELATED WORK
2.1. Map-Matching Approaches

Mobile phone data is showing a great potential in large-scale sensing of urban areas,
including sensing human mobility [Calabrese et al. 2014; Caceres et al. 2012]. Notable
work includes sensing home, work, commercial, and business locations [Becker et al.
2013; Ahas et al. 2010; Ratti et al. 2006; Xiao-Yong et al. 2011; Calabrese et al. 2011;
Ahas et al. 2010; Gonzalez et al. 2008; Girardin et al. 2008]. As reported in the litera-
ture, CDRs have been used in several research fields, and their use can be categorised
into three main approaches [Calabrese et al. 2014; Pucci et al. 2015]:

—Mobility behaviour study of a specific group of people using sampling and mining

individual trajectories: This use requires substantial processing power and have
concerns about the individual privacy [de Montjoye et al. 2013; De Jonge et al. 2012;
Isaacman et al. 2011; Ahas et al. 2010].
However, the CDRs still cannot precisely associate identified locations for a particular
cellphone user [[saacman et al. 2012]. Nevertheless, worries may arise, in general,
from using cell phone data if cellphone user’s movement is made available for a
beneficiaries third parties [Calabrese et al. 2014].

—Study the mobility patterns from a previously anonymised data provided by a phone
carrier: This approach is antithesis of the previous one; it shifts the focus from indi-
vidual level tracking and directing it to urban dynamics relating frequently visited
places or the geometrical patterns of urban mobility [Wang et al. 2012; Calabrese
et al. 2011; Thiagarajan et al. 2011; Becker et al. 2011; Gonzales et al. 2008; Gonzalez
et al. 2008].
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—Mapping of a geo-referenced and aggregated mobile phone data for land use studies:
It focuses on real-time geographical referencing of the traffic between cell phone
towers, which reflects the urban spacing (density mapping) by people as time and
space dependent relationships [Traag et al. 2011].

In this article, we focus on studying dynamics of the traffic by estimating road usage
patterns that originate in the second category; Table I summarises related approaches
as explained below.

Becker et al. [2011] have attempted to identify the route and estimate the traffic
intensity from cellular handoff patterns and signal strength; 15 routes were identified
using nearest-neighbour classifier based on earth mover distance (EMD) [Rubner et al.
2000] or logarithmic signal-to-noise ratio (SNR)-based classifier. The former system is
not feasible to apply to large-scale data as both nearest-neighbour-based classification
and EMD calculation are significantly time-consuming, and the latter does not assume
to efficiently conduct time evolution of the systems, since it is memoryless (i.e., does
not use any models).

Newson and Krumm [2009] introduce an HMM-based map matching algorithm for
finding the most probable routes represented by a sequence of GPS time stamps and
Lat/Long pairs. Their approach is close to ours; however, the considered GPS data has
different characteristics from mobile phone data in terms of spatial accuracy and reg-
ularity and density of sampling. Both of which are low for mobile data and thus affects
the formulation; our HMM model differs in state definition (boundary exist points),
transitions (allowing for further transitions), and learning the model parameters.

Krumm et al. [2007] applied HMMs to the map-matching problem. Thiagarajan et al.
[2009] developed VTrack to address the same problem, which carried out mobile phone
localisation using WiFi and GPS, followed by mapping the location estimates onto the
road segments using HMMs. They have also developed CTrack [Thiagarajan et al.
2011], which is a well-organised system for GSM-based map-matching and designed
on the basis of a comparable concept to our work. CTrack can match a set of GSM fin-
gerprints to road segments using HMMs with an accuracy of about 75%. It should be
noted that the main focus of CTrack is accurate trajectory mapping of each trip, while
our focus is not only trajectory mapping but also efficient system adaptation, that is,
development of the framework for efficient time evolution of the system. In CTrack, the
emission and state transition scores from HMM are heuristic and non-parametric (i.e.,
explicitly using data to calculate the scores). This system, therefore, could need trou-
blesome work such as data selection in the big-data tasks, making system adaptation
difficult. In contrast, our system calculates the emission and state transition scores
from probabilistic density functions trained using accumulated statistics to achieve
efficient time evolution of the system. Especially, in our method, intensity map gener-
ation and model parameter estimation are fully incorporated into the time evolution of
the road and traffic network model based on segmental K-means clustering algorithm.

In addition, the systems provided by Becker et al. [2011] and Thiagarajan et al. [2011]
(CTrack) assume rich information such as high-resolution observation sequences (e.g.,
one sample per second and one sample per 10m) that consist of the base transceiver
station (BTS) fingerprints and signal strengths with time stamps. CTrack can utilise
further information such as an accelerometer and a compass to improve the accuracy. In
contrast, our system is applicable even under more restricted and challenging condition
assumed in the D4D Orange Challenge task, that is, only very sparse BTS fingerprints
with non-constant intervals of time stamps are provided. Our HMM-based system
developed in the present work is designed to overcome this severe requirements.

Berlingerio et al. [2013] have developed AllABoard, which estimates origin/
destination flows and traffic volumes under the constraints in the D4D Orange Chal-
lenge, to optimize public transport. AIlABoard consists of: (1) stop extraction conducted
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by each user; (2) aggregated origin/destination flows between those stops; and (3)
shared route patterns extraction from the sequences of stops visited by each user. This
system does not assume any parametric models to estimate the origin/destination flows
and do not consider efficient time evolution of the system using observed data. This
work focuses on the flows based on the stops. The yielded routes, therefore, are coarse-
grained. In contrast, an attempt is made in our work to estimate the fine-grained routes.

Chen et al. [2014] have considered a low-sampling rate (1min) of GPS data for a
group of vehicle (floating vehicle); the purpose of which is to map-match the GPS data
into the traffic network, thereby estimating traffic flow. They used a multi-criteria
dynamic programming map-matching (MDP-MM) algorithm. Although the volume of
data collected from the vehicles is large, the considered problem differs in that the
spatial precision of the GPS data is high, and the trajectory is sampled regularly. The
MDP-MM algorithm relies on computing the velocity in its processing, which is not
possible for the mobile CDR data due to the high error in location accuracy/precision.

Mohamed et al. [2014, 2016] and Aly and Youssef [2015] have used HMM to provide
real-time map-matching for challenging position data traces that are characterized
by noise and sparsity, with and without input location estimation errors in SnapNet
and semMatch systems, respectively. SnapNet uses coarse-grained cellular-based time
stamp locations, that are sampled at high rates; where each site is associated with
an estimate of the localization error. Map-matching is performed in an incremental
manner that combines favouring main roads (through associating weights to roads
according to their classes), and a number of heuristics to reduce noise. The incremental
matching allows for on-line, real-time processing.

More specifically, SnapNet starts with two main preprocessing phases: filtering and
interpolation, before applying an online Viterbi decoding operation to produce the
desired routes transitions. Transitions that are unlikely to be in the actual route are
removed through the first preprocessing phase through a series of consecutive filters
(speed filter, a-trimmed filter, and direction filter). These filters depend mainly on the
in-transient sampled traces. Transitions from a road segment to the next is a function of
the geodesic distances between consecutive location observation (trajectory dependent
HMM). However, in our case data traces comprise both stationary and in-transient
history, thus affecting the applicability of the method.

SemMatch has almost the same system architecture as SnapNet coupled with the
commonly available and energy-efficient inertial sensors. Inertial sensors allow sem-
Match to detect the road semantic and use it as a hint to the map-matching process to
infer a vehicle’s current road segment.

Evaluation of SnapNet covers more than 400km with location update on cell-towers
change (every 2min, on average) in different cities achieving more than 90% accuracy
with noisy coarse-grained location estimation; while semMatch covers about 150km, in-
cluding coarse-grained cellular-based positioning, low-sampling GPS, and noisy traces
with back-and-force movement transitions.

Schulze et al. [2015] propose a geometric map-matching method relying on BTS
locations and time stamps of each signaling event. The map-matching process is carried
through two main phases; preprocessing geometric maps (OpenStreetMaps) by filtering
in desired roads, followed by the construction of a search graph using corridors; a
corridor defines an area between two consecutive observations. The geometry of the
corridor is controlled using two parameters: the radius of cellular towers emission and
the deviation of the corridor shape, varying from narrow, straight into broad round
shapes. They assumed that individuals tend to follow shortest paths, thus the real
path approximately follow geodesic lines between the origin and destination of a trip.
The search graph thus uses a modified Dijkstra algorithm to compute the shortest path
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for each corridor, speeding up the computation through caching common sub-paths in
a corridor.

Schulze et al. perform a detailed evaluation of 2,249 trajectories with an average
sampling time of 260s. They achieved 44% matching percentage in urban areas and
55% in rural and mixed areas. We further analyze this algorithm in Section 6, as it is
the closest to our considered problem with both large scale and sparse BTS data.

2.2, HMM-Based Algorithms Optimization

HMMs are statistical models for sequential data with hidden underlying structure.
HMNMs have important applications in language processing [Rabiner 1989; Martin and
Jurafsky 2000], speech recognition [Bahl et al. 1986; Rabiner 1989; Huang et al. 1990;
Rabiner and Juang 1993], biological sequence analysis, which include modeling protein
structure, gene finding, and sequence alignment [Krogh et al. 1994; Hughey and Krogh
1996; Eddy 1998, 1996a].

More recently HMM techniques are utilized in traffic monitoring and localiza-
tion [Gavrila 1999; Kamijo et al. 2000; Li and Porikli 2004; Aly and Youssef 2015;
Thiagarajan et al. 2009]. Thus, many modern computational techniques are employed
to accelerate HMM. Vector intrinsics and multi-core architectures are used in HMMIib
systems; Graphical Processing Units (GPUs) is used in cuHMM system; zipHMM uses
common expressions in multi-core systems. In this subsection, we explore the most re-
cent approaches that achieve a considerable speedup with different HMM approaches.
Table II presents a comparison of the most recently HMM optimization methods com-
pared to our proposed data sparsity optimization approach.

Soiman et al. [2014] introduced an efficient parallel HMM optimization based on
IBM Cell Broadband Engine (Cell/B.E.) architecture, which offers two levels of par-
allelization: Message Passing Interface (MPI) and MPI combined with Synergistic
Processing Element (SPEs) have been used in parallelizing Forward algorithm. The
proposed optimization has been stress-tested with a very long observation sequences,
on IBM Roadrunner architecture, leads to an encouraging decrease in the execution
time with a total speed up ~ 20x.

ZipHMM is an HMM library based on exploiting the observations repetitions to
expedite the log likelihood computations for input sequences in a similar manner to
string compression algorithms [Sand et al. 2013]. The library relies on a preprocessing
step to identify common substrings in the input sequences and build a computational
structure to be reused. This optimization leads to an enhancement of 78 x speedup.

HMMIib [Sand et al. 2010] is an HMM-based algorithms implementation that takes
advantage of modern computational techniques, especially the SIMD instruction and
multi-threading, targeting large-scale state-spaces. Double-precision SSE and OpenMP
implementation lead to a speedup of 10 x for the Viterbi algorithm with single-precision.

Moreover, Nielsen and Sand [2011] presented an alternative formulation of the For-
ward and Viterbi algorithms for small-scale state space. They parallelize the work-
loads across observation sequences giving each processor a greater chunk of work;
reducing the total communication overhead to the minimum. This optimization leads
to a speedup of roughly 5x and more than 6x for Forward and Viterbi algorithm,
respectively.

Parallelizing an input observation stream using GPUs has also been used for op-
timizing the HMM-based algorithms performance, leading to higher speedup factors
compared to traditional optimization methods. Liu [2009] parallelized a stream of
observation sequences of the same length over NVIDIA GPU platform threads and
accumulated the sought probabilities using per state threads. However, the input data
has limitations over the number of sequences, states, and the output. Liu et al. achieved
a significant speedup of 200x. HMMERsearch [Eddy et al. 2007] package used GPU
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Table Il. MM Parallelization and Optimization Approaches Comparison

Method Optimization Approach Usage Space size Speedup
IBM Partition observation sequences Require a Large sequence [20x
Roadrunner equally over Cell BE processors specific length
clusters based using two levels of MPI combined hardware
HMM [Soiman with Synergistic Processing features
et al. 2014] Elements (SPEs) accelerators
HMMlib [Sand Parallel HMM taking the SIMD and All 2x,4x,4x,10x
et al. 2010] advantages of SIMD support and multicore for Posterior
multi-cores using SSE and support decoding,
OpenMP IBaum-Welch,
forward and
[Viterbi algorithms,
respectively
ParredHMMlib Workload is parallelized over Distributed Small space 6x
[Nielsen and observed sequences using memory size < 512
Sand 2011] distributed memory element in
both emissions
and transitions
tables
zipHMMlIib Exploiting commonly occurring Multi-core All 4x -T8x
[Sand et al. substrings in the input to reuse systems
2013] computations as a preprocessing
step failed to be used with Viterbi
algorithm
cuHMM [Liu Parallelize a stream of observation | NVIDIA The number of [200x over CPU
2009] sequences of the same length over GPU states and the [Peak performance
GPU threads and accumulated the platform number of at no. sequences=
interested probabilities using per sequences no. states
state threads. The input data has must be a
some limitation over the number of multiple of the
sequences, states and the output. block size
GPU Unroll the outer loop of the NVIDIA All 6.5x over
speculative HMMERsearch [Eddy et al. 20071, GPU single-threaded
HMMERsearch but unrolling the outer loop has no platform SSE
[Li et al. 2012] benefit because of the data implementation
dependencies between iteration.
Thus, they allow speculative
execution of the next loop.
Moreover storing intermediate
results into registers, SSE
intrinsic, full use of texture
memory and pipelining are used in
the optimization
Proposed- Exploit the sparsity of the HMM No specific All depends on the
Sparsity-based data by eliminating the zero hardware - sparsity level but
HMM transitions from the calculations serial almost linear time
and allow only emitable states to execution complexity at high
be explored. The optimized sparsity data
algorithm does not sacrifice
accuracy, it provides the exact
optimal solutions.

capabilities to enhance its performance. However, they obtained only a 6.5x speedup
factor using single threaded SSE implementation.

None of the literature work in HMM-based algorithms optimization exploits HMM
data sparsity. In Section 5, we exploit the sparsity of the HMM data by eliminating the
zero transitions from calculations and allowing only emitted states to be explored. This
provides a linear Viterbi performance. This optimization does not sacrifice accuracy,
and it provides the exact optimal solutions.
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3. MOBILE PHONE DATA ANALYSIS

Orange Telecom Co. and SONATEL Telcom Senegal Co. have held a competition, Data
for Development (D4D), in 2014, where it provided three sets of CDRs for participating
teams [de Montjoye et al. 2014]. The data is provided for the Country of Senegal,
covering the year 2013. The first set provides antenna-to-antenna traffic, with hourly
time granularity; the second provides antenna zone-level (fine-grained) user mobility
on a rolling two weeks for about 300,000 randomly sampled users, at 10min time
granularity; the third provides arrondissement-level user mobility for about 150,000
randomly sampled users.

For the purpose of this article, we consider the second set, as it provides for individu-
alised user tracking. In this set, each CDR consists of an index to an anonymised user’s
mobile phone number and an index to the corresponding antenna, referred to as base
transceiver station (BTS). A CDR is recorded when a user initiates or receives a phone
call or an SMS; the duration of calls are not provided.

The set is structured into two weeks buckets, in which the users are not changed.
The CDR data are collected from about 300,000, randomly chosen users. The original
CDRs are filtered such that only users who interact more than 75% days in two weeks
are kept. Also, the users with more than 1000 interactions per one week are filtered
out, as those are more likely to be machines or shared phones. The BTSs are located in
various places and are co-located with multiple mobile operators at the same site, each
serve a different location or range of frequencies, in Senegal. The meta data provided
includes distorted BTS locations to preserve privacy and for other commercial reasons;
the BTS locations are noised so they belong in a random location inside its Voronoi cell.
We restrict our analysis to the Dakar area, considering up to 492 BTS. Dakar is the
capital and is the largest city of Senegal (total area of 82.34km?, has about 25% of the
country’s population and 80% of the country’s industrial and commercial enterprises).

Figure 1 shows daily mobile call distributions for six weeks, providing hourly call
frequencies. Each grey line represents the hourly mobile call frequencies accumulated
for all users over a day. The data has a local maximum frequency within the time
interval from 10 AM to 1 PM, and a global maximum frequency during the interval
from 9 PM to 2 AM per day. The blue line represents the average distribution; it has the
same behaviour as the individual daily distributions. Figure 2 shows daily cumulative
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frequencies of mobile calls, which indicates a large diversity from day to day within the
same week and the same day over weeks.

4. TRAFFIC MONITORING USING HIDDEN MARKOV MODEL

Figure 3 illustrates notations of a road network model used. A typical urban road
network is modeled as a graph where each node represents a junction intersecting
two or more roads. An edge represents a part of a road, we refer to as “road-edge.” A
road-edge is composed of a sequence of short straight-line road sub-edges, we refer to
them as “road segments.” An “exit-segment” is a road segment that crosses a zone’s
boundary.

A “road” is referred to as a “way,” and it is defined as a sequence of connected nodes.
To provide road geometry, extra information is associated with each road segment.

HMNMs are utilized to represent the traffic phenomena on that road network. Each
state in this model is defined to be an exit-segment. Figure 4 illustrates the diagram
of the system for sensing the traffic after generating the map.
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The system mainly consists of four processing stages as follows:

(1) Trip detection: BTS fingerprints for each trip (only the mobility) are extracted
from all the BTS fingerprints, including stops.

(2) Trip trajectory mapping using Viterbi algorithm: A trajectory for each trip is
estimated by mapping BTS fingerprints onto road exit-segments. This procedure is
achieved by the following two steps:

—YViterbi alignment: An optimal exit-segment sequence is estimated from BTS
fingerprints for each trip using the Viterbi algorithm.

—Accurate route estimation (post-processing of Viterbi decoding): More
accurate route for each trip is estimated using not only the Viterbi outputs
(i.e., exit-segment sequences) but also other road network attributes such as the
corresponding road-edge and junction.

(3) Statistics accumulation of trip trajectories and traffic intensity map gen-
eration: The statistics of trip trajectories are accumulated. The traffic intensity
map can be yielded using those statistics in terms of state transitions. The statistics
of the exit-segment sequences are also accumulated for model adaptation.

(4) Model update using accumulated statistics: Efficient time evolution of the sys-
tem is conducted by adaptively updating the model parameters using the previous
model and aforementioned statistics.

4.1. Road Network Generation

The open street map (OSM) is used to generate the map for Dakar.

According to Britain transportation statistics, users are more likely to take main
roads rather than non-major highways, for example, residential, unclassified, or un-
paved roads, with 65.7% of vehicles on main roads out of 317.1 billion mile traffic
coverage [Mohamed et al. 2016]. So, we consider five main highway road types, such as
motorway, trunk, primary, secondary, and tertiary, and their links. Eliminating other
road types produces road disconnections, affecting the traffic dynamics, as shown in
Figure 5; we therefore manually inspected such cases and included lower ranking roads
to remove the disconnections. With such breaks in roads, some of the existing routings
cannot be obtained, which affect the transitions from one point to another.

4.2. BTS Zone Representation

The road network space is partitioned with the Voronoi algorithm to yield a coverage
area for each BTS. Each BTS, therefore, is associated with a Voronoi cell, which is
defined to be a convex set of vertices. We used the zone indices with the BTS indices
determined in the CDR. Figure 6 shows a typical partition for 492 BTSs, covering Dakar
city. The centers of the Voronoi partitions are determined by a systematic projection of
the latitudes and longitudes of WGS84 BTS locations within the Dakar Geo-zone.

In this case, a mobile communication can be associated with the particular BTS.
However, as will be explained in the next section, we model the fact that a mobile
connection is not necessarily associated with the closest BTS because of the communi-
cation situation. This phenomenon can be modeled by using the probability distribution
for observations (i.e., BTS indices).

4.3. Model Representation

HMNMs are commonly described as a five-tuple model, 2 = ({¢}, {7}, {a}, {b}, {1}) [Eddy
1996b; Rabiner 1989]. The states, ¢, here correspond to the road exit segments. Since
each exit segment is associated with only one junction, we can easily identify those
exit junctions, thereby providing for more information about traffic in the roads with
substantially smaller state space than taking all roads, and thus be appropriate for
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Fig. 5. Examples of routes discontinuity with plotting motorway, trunk, primary, secondary, and tertiary
roads types in green and the remaining roads types of Dakar, Senegal in gray. Circles, in red color, are breaks
in the original roads network result from the inaccurate definition of road segments related to the same
route.

the considered city-scale problem. The state transition probability, a, is the probability
of an individual moving from a particular state to the same/another state. The initial
probability, r, is the probability of an individual starting from a particular state. A
discrete symbol (index), 1, is observed according to the emission probability, b, for each
state. CDRs contain records of individuals receiving or initiating a call or an SMS
message. A CDR consists of a mobile tower’s Voronoi partition (BTS index), a time
stamp, and anonymized individual id. In this case, the observations in our model, {1},
are only the BTS indices.

Both state transition and emission probabilities in HMMs are represented by multi-
nomial (discrete) distributions. a;; denotes the probability of the state transition from
¢i to ¢j; bi(c) is the probability of the signal from the BTS ¢ being received at the state
¢;; Ng is the number of states; and Z; is the zone where ¢; is included.

Figures 7 and 8 give an example illustrating how HMM is applied to a road network.
Figure 7(A) shows a road network and four BTSs observations A labeled: A, B, C, and
D. Single direction roads are indicated by arrows. Nodes represent junctions, with
and without exit-segments, colored grey and green, respectively. Exit-segments are
labeled with small orange squares. Figure 8 shows the corresponding HMM for the
not dimmed roads and junctions; the considered exit-segments, states ¢, are labeled
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Fig. 6. Typical Voronoi partitioning for 492 BTSs with boundaries plotted in blue that covers complete area
of Dakar, Senegal.

Fig. 7. (A) Road network representation for regular coverage areas of four BTSs; e¢; denotes exit-segments;
colors grey and green express nodes with and without exit-segments, respectively. (B) Trajectory decoding of
the BTS sequence < A, C, D >.

with e;. Notice that the edge between ey and e; models the case of missed observation.
Figure 7(B) shows a corresponding decoded trajectory (blue) for a given BTS sequence
of <A C,D >.

Self state transitions, a; (1 < i < Ng), and adjacent state transitions, a;; (i # j;
1 < j < Ng; and ¢; is adjacent to ¢;), are dominant among all state transitions in the
road and traffic network model. However, it is much likely to have missed observations
as it is not guaranteed that users receive very frequent calls for each region. Small
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Fig. 8. State representation of HMM for traffic modeling.

probabilities, therefore, are assigned to non-adjacent state transitions to cope with the
missed observations. As for the emission probability, observations from neighboring
zones are considered. This accounts for possible errors in the communication model’s
representation, where a call is not necessarily associated with the nearest BTS. To han-
dle this case, the multinomial (discrete) distributions for all the BTSs being observed
are assigned to the states.

4.4. Parameter Initialization

The state transition probabilities are initialized on the basis of the driving distance
on roads and direction between the states; we set the probability to be inversely pro-
portional to distance. The traffic road network is reformulated as a directed weighted
graph, to take traveling direction into consideration. The state transition probabilities
are denoted by a;;, for the transition from state ¢; to ¢;. They are initialized as follows:

(minlgksnSD(¢i»¢k)— -t .
S 1 ohang D@ T (i1 =png D@ g0 — D1 L=J

a;; = D(¢i.6)"! e ; (D
leksﬂs D(¢is¢k)’1 +(min1§k§ns D br) — -1 D((Pl ’ ¢J) S Zt

otherwise

where D(¢;, ¢;) denotes the shortest driving distance on real roads between the
exit-segments (states) ¢; and ¢;. Self transitions are set as the highest probability,
which is smaller than the minimum distance between any considered exits; and it is
the normalization of 1/(minj D(¢;, ¢r) — 1).

Cellular CDRs are generally sparse, since it is not guaranteed that subscribers
initiate or receive mobile activities per visited zones in his/her way. This results in
missing trips information, which makes it more complex to tracking individual routes
or even may lead to inaccurate directions.

Thus, exit states do not necessarily only belong to adjacent zones, but for non-adjacent
zones as well to allow for modeling missed observations. Allowing non-adjacent zone’s
exits transitions gives HMM the opportunity to interpolate linearly missed observation
in a range controlled by ¢;, where ¢; is the spatial threshold for defining reachable
states. Generally, missing observations in urban areas are higher than rural area as
the coverage area per BTS in urban areas is smaller, based on the population density on
urban to rural or peri-urban areas. Accordingly, we set ¢; to the largest distance between
any two adjacent BTS (6 km), as it is experimentally matched with the BTS network of
Dakar. Such considerable distances between towers can be located in rural areas. This
large distance between adjacent zones guarantees that the transition probability can
cope with any missed observation in either rural or urban area. We define ng to be the
number of reachable states from state i with distance less than ¢;.

For computing the emission probabilities, we consider the fact that the communica-
tion power is generally proportional to inverse square of the distances. Thus, we set
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the initial emission probability of the BTS as the follows:

R
D(¢;.pr) D(¢i’ pu) 2 Zpu

bi(k) = 02151451\’2 Digi.pu)* s (2)

otherwise

where b;(k) denotes the emission probability of observing BTS % while being at state
¢;; pr denotes the location of the BTS in a Voronoi zone (which is set to be the center of
the zone) and, £,, denotes the maximum distance threshold between the state ¢; and
the specific BTS within adjacent zones of p.

Finally, the initial probabilities are initialized and stress-tested using uniform distri-
bution and randomly generated probabilities. In all test cases, different = probabilities
tend to converge to the same probable paths without any differences, which makes
cellular-based routes largely insensitive to these particular initial values.

4.5. Trip Trajectory Mapping

Moving from the origin to destination is referred to as a “trip.” An attempt is made
to estimate the trajectories of individual trips from the BTS fingerprints by using the
Viterbi algorithm.

4.5.1. Trip Detection. Only the BTS fingerprints are used as the observations for the
HMDMs in the present study. It is, therefore, needed to extract the trips by filtering
out the observations that are mainly due to the individual staying at his/her origin
and destination and not in transit. Our approach for detecting trips is based on that
proposed by Calabrese et al. [2011] and Berlingerio et al. [2013]; this method computes
a set of stop points for each user, where every two consecutive (in time) stops consti-
tutes a trip. We, therefore, extend this approach to allow for keeping the intervening
observations.

Let x and ¢ be the BTS index and associated time stamp, respectively, and
H =< 01,09,...,0, > be the history of an individual’s activities, where o; denotes
the ith CDR observation given by (x,#). We modified the define stop described in
Berlingerio et al. [2013], as shown in Algorithm 1,! where a stop is the maximal
sub-sequence s =< 0, ...,0r > for 0 < m < k < n such that Distance(o;, 0;) < thy and
Duration(o,,, oz) > thy,

S =<O0Omy...,0p >
s.t.0<m<k<n,

max (Distance(o;, 0;)) < thy,
vm<i<j<k

Duration(o,,, Op+1) > thy, 3)

where Distance(o;, 0;) is the distance between any two observations belong to the
buffer, Duration(o,,, Or,1) > th; is the duration between the start of the trip to the
current observation being examined, th, is a spatial threshold (set to 1km), and th,
is a temporal threshold (set to 1h), such values have been demonstrated to be realistic
in Calabrese et al. [2011].

In our formulation, we differ in that we reduce the stop sequence into the first element
for a destination of a trip and the last element o, as the origin of the next trip. The
rationale behind choosing these elements is to provide for continuity of observations
within a trip.

IThe algorithm rejects stop sequences overlapping with earlier non-stop sequences.
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ALGORITHM 1: Modified stop detection
Input: Historical observation sequence H of the user u

Spatial threshold tA;
Temporal threshold tA,
Output: Trips sequence separated by a seperator
1 begin
2 Trips < {};
3 Buffer < {};
4 Maxgg < 0;
5 for all ain H do
6 for all b in Buffer do
7 if (distance(a, b) > Maxz,) then
8 | Maxgs < distance(a, b);
9 end
10 end
11 if (Maxgs > thy) then
12 Duration <« a.time — first(Buffer).time;
13 if (Duration > th;) then
14 if (Trips.empty) then
15 | Trips < Trips U {last(Buffer)};
16 else
17 Trips < Trips U { first(Buffer)};
18 Trips < Trips U {separator};
19 Trips < Trips U {last(Buffer)};
20 end
21 Buffer < {};
22 Maxgs < 0;
23 else
24 Trips < Trips U {Buffer};
25 Buffer < {};
26 Maxge < 0;
27 end
28 end
29 Buffer < Buffer U {a};
30 end
31 end

Thus, we define a trip by two consecutive stops (the end point of one stop as the
origin and the first element of the next stop as the destination of the current trip), and
we also include all intervening (nonstop) observations.

We have special consideration for the first observation; if it does not belong to a stop,
we define it alone as a stop, thereby defining the first trip. Moreover, to alleviate the
effect of event-driven location measurement, we remove successive observations with
the same time stamp (handover events) [Caceres et al. 2012; Ahas et al. 2010].

4.5.2. Trajectory Decoding. Forced alignment using Viterbi algorithm estimates an opti-

mal state sequence (exit-segments sequence) ¢, 1, . . ., ¢, 1, for the observation sequence
of the nth trip X, 1, ..., X, 1,.
Let v,(¢,7) be the emission probability of x,1,...,x,; being generated along the

optimal state sequence and x,; being emitted at ¢;; V,(¢, i), the pointer to the previous
state; T}, the number of samples in the nth trip; and Ng, the number of states. In this
case, the optimal state sequence can be obtained by the following procedure:
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(1) Initialization (1 <i < Ng):

vp(1,0) = m; - b;(X,1), (4)
Ya(1,7) = 0. (5)
(2) Iteration (2 <t <T, 1<i<Ng):
vp(¢,1) = max [v,(t — 1, k) - ap] - bi(x,), (6)
1<k<Ng
Y(t,1) = arg max [v,(¢ — 1, &) - agi] - bi(Xy4). (7)
1<k<Ng
(3) Determination:
After iterative calculation of v,(¢,7) for ¢ = 1, ..., T}, the emission probability of
Xn1, ..., Xn 1, being generated from the optimal state sequence can be determined
as follows:
P(x,1,...,X,1,) = max [v,(Ty, k), (8)
1<k<Njg
o1, = arg max [v,(T,, k)] 9)
1<k<Ng

(4) Backtracking (¢ =T,—-1,T,—-2,...,1):

The optimal state sequence of the nth trip can be determined by tracking back the
nodes giving the maximum likelihood as

¢n$t = Wn(¢n,t+1, t+1). (10)

Figure 11(b) shows three Typical example of individual users, fine-grained, trip
trajectories (green). These trajectories are obtained through mapping of mobile calls
sequences to produce most probable paths taken by individuals.

4.5.3. Sufficient Statistics Accumulation for Trip Trajectories. Two sorts of statistics are accu-
mulated in the developed system: the statistics for road-level, fine-grained trip trajec-
tories and those of the BT'S fingerprints for exit-segment (state) sequences. The former
yields the traffic intensity map and the latter is utilized for model adaptation.

The traffic intensity, which represents the number of vehicles passing through the
specific road segments during a given period with N trips, can be computed as statistics
of trip trajectories. In this case, the number of trips trajectories are accumulated for N
trips for each road segment; for repeated segments result from repeated observations,
only the count is incremented once, as this situation potentially indicates slow traffic
and no loop through the zone. Figure 9 shows a typical example of the traffic intensity
during day working hours. Light traffic at the early hours (6 AM to 9 AM) increases
gradually as time proceeds then high traffic flow becomes limited to only a few road
segments at the work break hours. Next the traffic flow backs to a light state at 3 PM
to 4 PM then increases at the end of the working hours. These figures show that the
adaptation algorithm captures only cellphones in a motion state and eliminates all
observations within stops.

Forced alignment using the Viterbi algorithm can assign an observation x,; to a
state in the HMM. As aforementioned, this assignment yields an optimal state (exit-
segment) sequence for a trip. Let &,(¢, i, j) be an assignment of the observations x,,;_1
and x,; to the state ¢; and ¢;, respectively; and y,(¢, i) be an assignment of x,,; to ¢;.
In the case of the Viterbi alignment, &,(z, i, j) takes one if the state transition s;_; = ¢;
to s; = ¢; is on the optimal state sequence for the nth trip and otherwise takes zero.
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Fig. 9. Typical example of a working day hourly traffic intensity; starts with a light traffic at early hours,
then gradually increases during the 9 AM to 11 AM period. At noon hours, only few roads remain active with
high traffic intensity. As time proceeds to work break time (1 PM to early 3 PM), more roads become active,
then the traffic state drops to light state and increases at end of working hours.

In addition, y,(¢, i) takes one if the state s; = ¢; is on the optimal state sequence and
otherwise takes zero. Noted that the statistics of &,(¢, ¢, j) and y,(¢, i) accumulated along
the optimal state sequences are used also for updating the model parameters under
the maximum likelihood criterion.

4.6. Adaptive Traffic Model Estimation

Time evolution of the system can be achieved by adaptively updating the model pa-
rameters in HMMs. The maximum likelihood (Viterbi training) [Allahverdyan and
Galstyan 2011] estimates of the state transition and emission probability distribution
can be calculated using accumulated statistics about the BTS fingerprints for the state
sequences, Y ST £ .(¢,4, j)and Y0 | ST y,(¢, 1), obtained as the results of Viterbi
alignment, as follows:

N T, ..
ap = et (11)
D=1 Zj:l Dol &t )
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ZnNzl Z,,‘Til Vn(ty i)- S(Xn,t, c)
Y valt, i)

where a}\fL denotes the ML estimate of the probability of the state transition ¢; to ¢;;

bML(c), the ML estimate of the probability of the signal from BTS ¢ being received at
the state ¢;; N, the number of training data sequences (i.e., trips); T, the number of
samples in nth trip; and

(12)

bME(c) =

1, ifx,, =c

0, otherwise" (13)

(X, 0) = {
For example, Equation (11) represents the rate of the vehicles receiving the signal
while passing through the road ¢; to ¢; among the vehicles passing through ¢; for N
trips.

The maximum likelihood estimates described in Equations (11) and (12) are possible
to be unreliable for the states and state transitions with only small amount of data
assigned. To solve this problem, an attempt has been made to linearly interpolate the
ML estimates of the model a}\]’-[L and bIML(c) with the previously estimated parameters

a?) and b (c), yielding the new estimates ;" and b{"*"(c) as follows:
ag-H) =« -ag-) +(1—-0a)- agL, (14)

b () = a-57(c) + (1 — a) - BME(e), (15)

where r denotes the number of updates and «, the interpolation coefficient. The ef-
fect of @ on the performance of the proposed system is investigated in Section 6 (in
Figure 18(b)).

Our HMM formulation is based on the underlying traffic network and cellular towers
locations semantics. This makes it suitable to infer traffic flow with different data
patterns including work days and weekend days. However, training our model using a
hybrid collection of weekend and labor days significantly alter model convergence, as
work days and weekend days may have different transition probabilities. Therefore,
training the proposed model with a day-to-day slicing periods may significantly enhance
its accuracy, for example, peak hours transitions probabilities. In our results, we focus
on working days eliminating training with weekend days.

5. VITERBI DECODER OPTIMIZATION

The execution time of the Viterbi algorithm is critical, owing to a large number of
states and observation sequences. A standard implementation of the algorithm results
in around 80 seconds to reconstruct a single observation sequence (running on a recent
iDataPlex, Intel Xeon CPU E5-2660, 2.20GHz based processing node). For the 300,000
users provided, the number of observation sequences per day is in the order of 100,000;
thus, this will require 92 days to process a single day.

In this section, we propose an optimized Viterbi algorithm that exploits the sparsity
of the data, allowing for real-time processing; the optimized algorithm does not sacrifice
accuracy and provides the exact optimal solution as the standard Viterbi algorithm.
The algorithm is easily parallelizable over parallel cluster systems, allowing for further
scalability.

5.1. Viterbi Algorithm

To illustrate our optimisation, we first review the standard Viterbi decodor [Forney
1973; Viterbi 1967] Algorithm 2. The algorithm takes the following as input:
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ALGORITHM 2: Viterbi Algorithm

Input: Emissions, b,, = {b, b1, ..., b,_1} where m is the number of all possible emissions.
Observation sequence, A =< 0g, 01, 0s, ..., 0;_1 > Where o; € b,, and [ islength of the
sequence.

Transition Probabilities, @; ; such that 0 <i, j <n—1.
States, ¢ = {¢0. #1..... Dn-1}.

Emission Probabilities, b; ; such thati € ¢ and j € A.
Start Probabilities 7; € ¢

Output: Max. Probability, OutputProb

Edge sequence, OutputPath =< ¢, ¢o,, ..., ¢o , >

1 begin
2 V < {}
3 Path < {};
4 /* Initialize the case for the observation 0 x/
5 forall y € ¢ do
6 VI0llyl < 7, x by.0,;
7 Path[y] < y;
8 end
9 /* Proceed with dynamic programming for the rest of observations x/
10 fori <~ 1tol/—1do
11 forall y € ¢ do
12 (prob, state) « (1}12;((V[t — 1lyolay,,4by.0,). ¥0);
0
13 V[t][y] < prob;
14 NewPath[y] < Path|[state] + y;
15 end
16 Path < NewPath,;
17 end

18 (prob, state) <« (ma}ﬁx(V [nllyD), ¥);
ye

19 QutputProb <« prob;
20 OutputPath < Path|[state];
21 end

—Set of HMM states, ¢.

—The transition probabilities among states, a; ; (where i, j € S).

—A set of all possible emissions, b,,, that can be emitted by all the states.

—The emission probabilities for each state, b; j (Where i € by, j € ¢).

—Initial starting probabilities for each state, ; (where i € ¢).

—A given observation sequence, A, which the Viterbi algorithm decodes, finding the
corresponding hidden states that emits such sequence with maximal probability.

The algorithm starts by the initialization of the Viterbi array, V, to null (line 2);
V is a two-dimensional array, where the first index is the time and the second is the
state. The array holds the best (maximum) Viterbi probability for a given state. The
algorithm also initializes the Path array to null (line 3). The path is a one-dimensional
array indexed by the state and contains the sequence of states constituting the best
current path to that particular state.

The algorithm then initializes the V array to initial probabilities and Path array to
the corresponding state (lines 5-8).

The algorithm’s main loop (lines 9-17) iterates over each time step (corresponding
to an observation), and for each state it checks the best predecessor state, that has a
maximum probability (line 12). As we have n states, and [ observations (or time steps),
the complexity of such operation is O(n?l).
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The last part of the algorithm selects the V entry with the highest probability and
emits it with the corresponding path (lines 18-20).

5.2. Eliminating Multiplication by Zero Computations

One obvious optimization is eliminating zero transitions from the calculation. This can
be easily done by providing a linked list representation of all predecessor states to a
particular state, thus potentially improving the asymptotic complexity by n for sparse
transitions.

A more precise optimization is to eliminate multiplication by zero emission probabil-
ities, that is, for states that have zero emission probabilities. The problem here is that
the zero has to be written into the corresponding entry in the V array, requiring the
same order of computation. However, we propose a simple data structure that allows
for avoiding the zero writes.

A significant observation with the Viterbi algorithm is that at a given time step, ¢, all
states values (in the V array) are updated, based on reading values from the previous
time step ¢ — 1. We thus associate a time stamp, 7', with each value indicating the time
of the last update, as well as keeping the last two written values, at 7' and T' — 1; when
reading and writing, the current time step value, ¢, is given, and the value is either one
of the stored values or zero if T' < ¢ — 1.

Algorithms 3 and 4 below provide the corresponding algorithms for writing and
reading. The V array dimensionality is reduced to a one, such that each entry includes:

—T': time stamp of the last write operation;
—[0..1]: an array of two Viterbi values, organized as a stack;
—h: the index of the head of the stack, indicating the most recent written value.

The write operation (Algorithm 3) writes the “value” onto the oldest entry, updating
the head index, A, to point to the other entry. If the “WriteTimestamp” is not the next
T + 1 (i.e., not the next, expected, time stamp), then the oldest entry is nulled; in this
case, we maintain the condition that the last entries are recorded, and since no write
is done for T' — 1, it is set to zero.

ALGORITHM 3: Write Algorithm

Input: WriteTimestamp,Value

Output: 7', v[2], h

begin

/* Invert the index of the head of the stacks (h) between 0 and 1 */

h < h;

v[h] < Value;

if (T+1) # WriteTimestamp then
| vkl < 0O;

end

T <« WriteTimestamp;

end

© X TDO R W N

The Read operation (Algorithm 4) takes the read time stamp, “ReadTimestamp,” and
the corresponding entry values, and returns the correct value; as the entry includes
values stored into 7' and 7' — 1, a read to an earlier entry returns zero.

The full algorithm after optimization is given in Algorithm 5; the modified lines are
shown in “bold.”
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ALGORITHM 4: Read Algorithm

Input: ReadTimestamp
T,v[0..1], h
Output: Value
begin
AT < T —ReadTimeStamp;
if (AT = 1) then
| Value < vlhl;
else
if (AT = 0) then
| Value < vlhl;
else
| Value < 0;
end
end
end

S O WIS AW

-
—

-
N

5.3. Performance Analysis

It is worth noting that when considered the total number of exit-edges considers (order
0f 12,000) and a sequence of 16 observation, the execution time of the base algorithm is
approximately 13s. Our new optimization reduces the time into 2.5ms, giving a speed
up of 5,200x. Moreover, with increasing the number of roads (e.g., when considering
a larger area), the number of transitions and observations per state is likely to be
constant as it depends on the local traffic network topology and antenna. Therefore the
computation complexity becomes O(n) (in both time and space). Our experiments have
been carried on iDataPlex, Intel Xeon CPU E5-2660 with two NUMA nodes of 8 cores
per socket (256KB L2 cache, 20MB L3 cache) with single thread per core, running at
2.20GHz and 125GB main memory.

Furthermore, we have compared our implementation with the highly optimised
HMMlib [Sand et al. 2010] for new CPUs. HMMIib takes advantages of CPU’s new
features, such as SIMD and multiple processing cores. Features of HMMIlib can be con-
trolled by the user and it has the only advantage over the large states space. Comparing
with such highly optimized package is interesting, because it shows the effectiveness of
eliminating zeros multiplications. Comparing the proposed sparsity optimization with
HMMlib, we got a speedup of 1,234 x with states space 3,072 states and 512 observ-
ables. As shown in Figure 10, reducing the state space to 1,024 state, the running time
gap between the highly parallelized HMMIlib and the proposed optimized sequential
Viterbi decreases as the total number of states multiplication is decreased, giving 580 x
speedup to the optimized Viterbi for sparse HMM over HMMIib.

ParredhmmLib [Nielsen and Sand 2011] is another parallelized HMM package de-
veloped by the same team of HMMIib. ParredhmmLib has been optimized for small
state space. Unfortunately, all trials to use this package for state space greater than
1,024 failed. So, we examine it against our implementation with a small state space,
as shown in Table III; for 256 states the proposed optimization achieves a speedup of
2,075x when compared to ParredhmmLib. When duplicating the number of states to
512, the speed up dramatically increases to 9,286 x1 with further increase in the state
space to 1,024 states, the speedup increases to 13,445 x.

Finally, we have compared our implementation with GHMM [Schliep et al. 2006].
GHMM implements the standard HMM computing algorithms [Rabiner 1989] with
some extensions to the model and the implemented algorithms. GHMM is not optimized
for neither large state space not small space and it doesn’t provide any parallelization
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ALGORITHM 5: Optimized Viterbi Algorithm for Sparse Transitions and Emissions

Input: Emissions, b,, = {by, b1, ..., by,_1} where m is the number of all possible emissions.
Observation sequence, A =< 0g, 01, 02, ..., 0;_1 > wWhere o; € b,, and [ is length of the
sequence.

Transition Probabilities, @; ; such that 0 <i, j <n—1.
States, ¢ = {(po’ D1y s ¢n71}-

Emission Probabilities, b; ; such thati € ¢ and j € A.
Start Probabilities 7; € ¢

Output: Max. Probability, OutputProb

Edge sequence, OutputPath =< ¢, ¢, ..., ¢, , >

1 begin

2 V< {}

3 Path < {};

4 /* Initialize the case for the observation 0 */

5 forall y € ¢ do

6 /* Initialize the Viterbi entry to have a time stamp T with zero, v[0]
with StratProb, v[l] with zero, and head index A with zero */

7 Viyl < (0, 7y x by0,,0,0);

8 Path[y] < y;

9 end

10 /* Proceed with dynamic programming for the rest of observations */

11 fori <~ 1tol/—1do

12 for all y € ¢|by 0, # 0 do

18 (prob, state) < ( max (Read(Vy,l, £ — Day, yby.0,), yo);

y0€¢\ay0.y#0

14 Write(V [y], ¢, prob);

15 newpath[y] < path[state] + [yl;

16 end

17 path < newpath,;

18 end

19 OutputProb < prob;

20 OutputPath < path[state];

21 end

like the proposed optimized algorithm. Comparison with such a general implementa-
tion gives a speedup of 1902 x with states space 3,072 states and 1,024 observables.

So our proposed optimization can be useful for high sparsity HMM model, as it
eliminates all multiplications zero and reduces the search space by keeping only with
emit-table states from each state observable.

6. VALIDATION AND ANALYSIS

In this section, we present our evaluation of the proposed HMM-based map-matching
approach. With the absence of ground truth data for the CDR, we resorted for two main
validation approaches; the first relies on oversampling individual ground-truth traces
to emulate cellular traces and using the GPS as ground truth. The second is to consider
the aggregate cellular-based traffic flow and correlate against theoretical traffic flow
models (e.g., Gravity and Equilibrium traffic flow models), and instantaneous traffic
volume snapshot using Google maps as explained in the following subsections.

6.1. Emulated Cellular Traces Map-matching

We stress-tested our approach using real challenging positioning (GPS) data traces to
assess the accuracy of individual trajectories. We consider two trajectories types: rela-
tively accurate GPS-based trajectories (considered as ground truth) and cellular-based
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Fig. 10. Sparsity optimized Viterbi decoder running time compare to highly parallelized HMMs implemen-
tations.

Table Ill. Sparsity Optimisation Speedup Versus HMMs
State space | GHHM | ParredhmmLib | HMMIlib

256 80 2,075 52
512 181 9,286 143
1,024 201 13,445 108
2,048 844 — 582
3,072 1,902 — 1,234

trajectories evaluated using our proposed map-matching and the method of Schulze
et al. [2015]; the closest work in the literature work using only cellular fingerprint with-
out any additional information, and considering large-scale data. The cellular-based
trajectory is subsampled from the ground-truth traces, with a fixed sampling rate.

We used six metrics (similar to Schulze et al. [2015] and Aly and Youssef [2015])
to assess the proposed method including: divergence, precision, recall, F-score, com-
muting distances, and, finally, the execution time. To evaluate the metrics, we define
the trajectory as pair-wise connected exit segments (connected with straight lines). We
measure the commonly matched trajectories subsequences lengths between the ground
truth and cellular mapped trajectories by, sampling each path with a fixed rate (Im
samples), computing the distance from each point to the nearest ground truth.

We define the evaluation metrics as follows:

(1) Divergence: is the average distance between the map-matched trajectory and the

nearest GPS point. A zero distance from a cellular-based trajectory segment to the
ground-truth traces means a perfectly matched route.
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(2) Precision, recall, and F-score: are defined in terms of segments in the map-matched
path that have a distance less than a certain threshold from the nearest GPS point.
We refer to these segments as “correctly matched trajectory segments.”

For evaluation, we set the distance threshold to 150 meter, which is half the
average distance from any road segment to the nearest targeted roads categories,
for example, primary, secondary, ..., and so on. The three metrics are defined as
follows:

—Precision: is defined as the ratio of the total length of the correctly matched
trajectory segments to the total length of the whole map-matched trajectory.

—Recall: is defined as the ratio of the total length of the correctly matched trajec-
tory segments the total length of the ground-truth trajectory. The ground-truth
trajectory a sequence of straight lines connecting each consecutive pair or GPS
points.

—F-Measure: is the harmonic means the precision and recall, defined as

Precision x Recall)

1
Precision + Recall (16)

F-Measure = 2 x (

(8) Commuting distance: represents the total length of the map-matched trajectory.

(4) Execution time: is the time required to map a cellular observations sequence into
trajectory segments without taking into consideration the preprocessing time (e.g.,
in Schulze et al. execution time is the time consumed to construct a search graph
and find the shortest path).

We test the accuracy of our map-matching approach and Schulze et al’s map-
matching algorithm on real data traces collected from Dakar, Senegal. Our data consists
of ~ 300km (3,700 observation) of driving cover almost all Dakar, Senegal. As shown
in Figure 11(a), data traces intersect with both peri-urban and urban areas (mixed
areas).

We stress-tested Schulze et al’s proposed algorithm against varying transmission
radius. We set the minimum cellular tower coverage of transmission radius to be
0.5km; we also consider half the average distance between two adjacent towers, which
is 1km; and we considered the maximum distance between adjacent zones, which is
5km; moreover, we take into consideration Schulze et al.’s recommendation of 3km in
combination with deviation equals to 1. These values yield the best results, according to
Schulze et al., and produce good approximation for rural area’s trajectories. Moreover,
we measure the accuracy of these settings at a varying sampling intervals from 1min to
30min. Figure 11(b) presents real data traces mapped to road segments using our prob-
abilistic HMM-based map-matching approach and Schulze et al.’s algorithm, in green
and blue colors, respectively, at 1km radius and low-sampling interval equals 1min.
Base stations are denoted by a small yellow circle, indicating their physical locations.

In the three randomly presented routes, cellular-based decoded trajectories are very
close to the ground-truth, but there are two primary notices:

—PFor any concave or convex subroutes with arc length less than the assumed radius
of transmission, Schulze et al. take the shortest path instead of the actual routes.
According to the findings of Hoteit et al. [2013], in estimating real human trajec-
tories using mobile data, human trajectories can be approximated using a number
of models, including linear, nearest and polynomial interpolation, indexed based on
individual’s radius of gyration; thus, shortest route can result in inaccuracies.

—Cellular-based trajectories commuting distances are less than the actual length in
both ours and Schulze et al. However, it is shorter in Schulze et al’s case. This
might be attributed to that length and divergence are highly related to the radius of
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(a) Real data traces; representing both urban and rural areas of Dakar, Senegal. Data consists of 15 trajec-
tories, ~ 300 km total commuting distance, each plotted in a unique color.

(b) Real data challenging decoded routes using our probabilistic map-matching method and Schulze et al.
algorithm, in green and blue colors respectively, at 1 km radius and short sampling intervals equals to 1
min. Base stations are denoted by a small yellow circle indicating their physical locations. GPS data traces
are plotted in solid red color. Trajectories presented in this example are selected randomly.

Fig. 11. Real data challenging map-matching positions example.
transmission, and thus a uniform setting introduces inaccuracies; this is especially
important when considering urban, peri-urban, and rural areas.

We used different scenarios of challenging map-matching using our probabilistic
HMM-based proposed method as well as Schulze et al’s algorithm to estimate the
evaluation metrics. The results are as follows:
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Fig. 12. Average divergence comparison between GPS ground-truth trajectories and cellular-based matched
routes decoded using our proposed HMM-based map-matching approach and Schulze et al.’s algorithm.

—Divergence: Figure 12 shows the overall average divergence of the cellular-based
mapped trajectories from the ground-truth paths with an alternating observation
sampling interval and transmission radius. Our probabilistic map-matching ap-
proach tends to have the least divergence as compared to Schulze et al’s algorithm,
at a distinct sampling intervals as Figure 12(a) presents. Schulze et al.’s algorithm
deviation starts high with 1min sampling then reaches the best deviation at time
sampling of 3min and back to increase. Increasing the sampling rate negatively af-
fects the deviation from the true routes but with higher deviation in Schulze et al.’s
algorithm.

While the radius of transmission affects the route of Schulze et al.’s divergence, it
has no effect on our method, as shown in Figure 12(b). Increasing the transmission
radius negatively affects the deviation as enlarging the transitions search graph,
which allows Dijkstra to find much more shorter paths than the actual route even if
the chosen route is far from the true path.

—Precision, recall, and F-measure: Figure 13 shows that our proposed HMM-based
map-matching has better accuracy as compared to Schulze et al’s algorithm. For
the best sampling rate 1 min and the smallest recommended transmission radius
500m, our map-matching approach leads to enhancement in the precision, recall, and
F-Measures of 131%, 176%, and 152%, respectively, over Schulze et al.’s algorithm.

Moreover, increasing the sampling rate reduces the accuracy of the cellular-based
route in general. But the accuracy reduction in Schulze et al.’s routes is much higher
than ours as shown in Figure 13(a). As mentioned before the presumed radius of
transmission also negatively affects the accuracy, as presented in Figure 13(b). This
highlights the advantages of our probabilistic model over Schulze et al.’s algorithm
in mapping cellular observations into road segments.

—Commuting distance: At the short sampling interval (1min), our HMM-based map-
matching approach and Schulze et al.’s algorithm tend to produce routes at almost the
same distance from the ground-truth path length. Increasing the sampling rate closes
the gap between our map-matching routes and the ground truth. Table IV shows a
randomly selected routes commuting distances using different map-matching meth-
ods as well as the corresponding true paths lengths at varying time sampling rate
and 1km transmission radius. Commuting numbers prove that the length of the
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Fig. 13. Accuracy of the proposed HMM-based map-matching as compared to Schulze et al.

Table IV. Randomly Selected Commuting Distances using Different Mapping Methods and the Ground-truth
with Diverging Observations Sampling Rate and Fixed Transmission Radius Equals 1km

3min sampling 5min sampling 10min sampling 15min sampling
Schulze Schulze Schulze Schulze
GPS Ours et al. Ours et al. Ours et al. Ours et al.

20.437 | 21.813 18.653 22.574 18.653 18.962 17.907 19.577 17.438
20.965 | 19.412 21.397 19.362 17.445 18.054 19.050 16.365 19.496
12.627 | 11.108 9.643 10.484 9.643 7.921 9.643 8.862 9.873
20.721 | 20.846 16.550 21.650 16.550 18.387 15.133 16.988 15.880
20.639 | 22.525 18.879 21.668 18.100 19.156 17.598 18.249 16.983

map-matching route using our approach below the true length in the worst case with
~1.5km, while Schulze et al. produce routes less in length in a range of 2 to 5km.
These values can be confirmed using the ratio of the decoded routes to the ground-
truth presented in Figure 14. At a sampling rate of 3min, our approach decodes on
average route of the same length as the true paths with a ratio of more than 103%,
but Schulze et al. results in shorter routes. Increasing the sampling rate reduces the
gap in the decoded routes length to be almost equal at 30min sampling rate.

—Execution time: Map-matching approaches use only time stamped cellular locations,
without any further information from the mobile sensors or intermediate locations
error estimation, targeting cellular providers CDRs big-data. CDRs datasets are
in order of millions of records as compared to the individual’s mobile data probed,
which require intensive computational resources. This makes the execution time of
a proposed method a crucial issue.

As explained in detail in Section 5, the execution time of the kernel algorithm
in our proposed method is critical especially with a large number of states and
observations. Nevertheless, exploiting the data sparsity gives us the opportunity to
optimize Viterbi algorithm without losing its accuracy, and provides the exact optimal
solution in linear time complexity. Schulze et al. perform an expensive search graph
construction and start/end road segments selection. Search transition graph is used
to limit the choice of road segments to these segments belonging to the cellular
observations coverage areas.
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Fig. 14. Commuting distances ratios comparison, of the cellular-based trajectories to the ground-truth GPS
traces, between our HMM-based map-matching probabilistic approach and Schulze et al’s algorithm.

The graph construction is based on adding road segments belonging to a corridor
covering the area of each two consecutive observations in a time frame, for example,
for observation length L, and z cellular base stations, and n road segments belong to
a map portion, the transition graph construction is O(Lnz). The newly constructed
transition graph has % road segment where & < n.

Graph cut is accompanied by selecting the start and end segments of an individual’s
trips, for example, m chosen road segments close to the start/end observation base
station and each search takes O(klg(k)); the search part is O(m? x klg(k)). All of these
operations per single trajectory make it slower than ours as indicated in Figure 15.
At the smallest radius of transmission, the best slow down of Schulze et al. to ours
is 107x increase with increasing the sampling rate from 1 to 30min to be 685x.
Extending the radius of transmission widens the gap between us to be 1296 x at 5km
radius of transmission.

Finally, training influences individual’s routes. The adapted training procedure tends
to put high probabilistic weights on the most frequently used road segments. Conse-
quently, some routes may be slightly shifted from routes decoded using the original
HMM-based map-matching. This behavior enhances a number of the decoded routes
precision and may negatively cause a shift to a path away from actual segments.

As expected, as shown in Figure 16(a), trajectory segments precision of some routes
are enhanced such as routes 1, 9, 11, and 12; while others are deviated from the
actual routes. Results show 52%, 45%, and 48% in precision, recall, and F-measure,
on average, respectively (in comparison with 70%, 84%, 76%, respectively, for the not
trained case). The overall precision and hence the accuracy metric has been reduced
by 8%, as demonstrated by Figure 16(b).
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Fig. 16. Accuracy of the proposed HMM-based map-matching vs. its trained model at varying sampling
rates and routes.

One reason behind this mostly negative training result might be attributed to the
fact that training is done with no ground truth (not labelled data); training maximized
a system metric (which as aggregate traffic flows), which results in a better system
metric result (as described in the next subsection), rather than individual trajectories.

This leaves us to train the proposed model with inaccurate routes, in the best case of
guaranteed 10min observations, regarding the CDRs dataset; results show 52%, 45%,
and 48% in precision, recall, and F-measure, on average, respectively (in comparison
with 70%, 84%, 76%, respectively, for the not trained case).
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6.2. Aggregated Traffic Flow

Validating the obtained aggregated traffic flow is especially difficult with an absence
of the ground truth (i.e., correct labels), which is typical in mobile big data problems.
We, therefore, conducted an aggregate analysis using the following:

—the correlation between the widely-used gravity model and the CDRs ODs extracted
using the modified stop detection method was investigated [Calabrese et al. 2011,
Berlingerio et al. 2013];

—the correlation between road-segments flow estimated using HMM and the widely-
used user equilibrium traffic model was investigated for validating the aggregate
trip trajectory mapping using identical ODs [Jahn et al. 2005]; and

—the road-segment flows obtained using the proposed HMM was compared with Google
Earth history images for a randomly selected set of road segments from four different
regions within Dakar, Senegal.

Extracting the OD flows can provide the capacity to gain an accurate deep intuitive
understanding of the mobility within a city. We, therefore, validate the extracted OD
flows by comparing it with the basic traffic model used in transportation (gravity
model).

The gravity model is defined as Berlingerio et al. [2013]:

. Oout * Din
Gravity(O, D) = Distance(0. D" a7

where O and D denote two zones corresponding to the origin as the starting point of
an individual trip and the destination of the trip with O # D; O,y is the cumulative
number of vehicles going out of the zone O; D, is the cumulative number of vehicles
going in D; and Distance(O, D) is the shortest path distance from the designated origin
O to the destination D.

Figure 17 explains correlation comparison of the estimated OD flows versus grav-
ity model using our modified stops detection algorithm as compared to Berlingerio
et al’s stops detection algorithm. It compares between these algorithms at with/out
the presence of repeated observations. As shown in Figure 17(a), Berlingerio et al’s
ODs correlation with the Gravity model is 72 = 0.55, which is very close to that reported
values in their work [Berlingerio et al. 2013]. But eliminate the repeated observation
negatively affects its correlation values; it reduces it to be 0.52.

In the other hand, our algorithm overweight Berlingerio et al.’s algorithm with and
without repeated observations, as shown in Figures 17(b) and 17(d), with correlation
ratios 0.621 and 0.628, respectively. Moreover, our algorithm shows a high consistency
aginst the presence of repeated observation. Our algorithm’s detected ODs correlation
with the widely used Gravity model increased with a small fraction +0.7%, while
Berlingerio et al.’s correlation reduced by —3.4%.

The proposed model has been validated on the basis of the user equilibrium stan-
dard traffic-flow model. User equilibrium is one of the most popular route assignment
models, typically used to predict traffic routes, given ODs [Jahn et al. 2005]. In this
model, a commuter follows the route with the least possible commute time, taking into
account earlier assignments.

We have applied our HMM to the extracted trips; around ~40% of the trips are
decoded using Viterbi algorithm; the others apparently require more relaxation for
model parameters, which is subject for future work.

Figure 18(a) shows the cumulative probabilities of vehicles traveling per road edge
obtained by the user equilibrium traffic model (obtained from a standard module of
the SUMO traffic simulator) and the individual trajectories calculated by the proposed
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Fig. 17. Correlation comparison of the estimated OD flows vs. gravity model using our modified stops
detection algorithm as compared to Berlingerio et al’s stops detection algorithm. Panels (a) and (b) show the
correlation at the presence of repeated observations, while panels (¢) and (d) show the estimated correlation
with eliminated repeated observation.

HMM model. This figure shows almost similar distribution of vehicles per road edge,
which implies a high correlation between these methods.

As shown in Figure 18(c), the proposed model provides a correlation of 72 = 0.562
with the standard user equilibrium traffic-flow model at the confident interval of 0.5245
to 0.5745. This correlation’s values gradually increase with the training epochs till
saturation is around 35 epochs with the interpolation coefficent of « = 0.8 and « = 0.9,
as shown in Figure 18(b). The correlation between the trained HMM-based traffic model
and user equilibrium, shown in Figure 18(d), becomes 2 = 0.639 at the saturation point
of the training at confident interval estimation between 0.618 to 0.6417.

The average daily HMM flow calculated with the proposed system is visually com-
pared with user equilibrium with ODs for the same period in Figure 19. This figure
shows a strong correlation between the flows of estimated trajectories and those of user
equilibrium model. Furthermore, the average number of vehicles per edges in both are
very close, for the HMM-based vehicle density, average flow is 135.48, and using the
same OD flow with user equilibrium traffic-flow assignment, the average number is
120.56 over one-month workdays.

Finally, we compare the number of vehicles obtained using the proposed system and
Google Earth history images for a randomly selected set of road segments from five
different regions (Biscuterie, Grand Dakar, Castor, Cite Millionaire Hlm Patte doie,
and Sicap dieupeul) within Dakar, Senegal. The number of vehicles is calculated at
the imaging time of Google Earth images, which is 9 AM for all Google images history
available for this region during 2013. Table V lists vehicle densities using Google’s
airborne images history and HMM vehicle densities. The vehicles count shows a high
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Fig. 18. Correlation comparison of the estimated routes using our probabilistic map-matching approach
and the user equilibrium traffic flow model.
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Fig. 19. Average daily vehicle densities for trained HMM-based traffic model with 35 epochs and average
daily user equilibrium traffic model for one month workdays. Green color indicates light traffic flow; as the
color goes darker, the traffic flow per road-edge becomes higher.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 4, Article 52, Publication date: July 2017.



Real-Time Large-Scale Map Matching Using Mobile Phone Data 52:35

Table V. Vehicle Density Using Google Airborne Images History and HMM Vehicle Densities.
The HMM Vehicle Are Counted at Same Imaging Time of Google Earth Maps, Which Is 9 AM

Street/Counting method 8/2/2013 20/10/2013 7/11/2013 22/12/2013
Google HMM | Google HMM | Google HMM | Google HMM

Avenu Cheikh Ahmudou 54 44 24 10 59 24 20 32
Mbacke

Rue Serigne Fallou Mbacke 37 23 27 9 24 7 29 16
Allees Cheikh Sidaty Aidara 57 23 59 17 54 16 43 9
Boulevard Dial Diop 24 16 11 9 27 15 18 5
Allees Seydou Nourou Tall 16 24 5 8 13 32 7 8
Route du front de terre 63 16 49 32 174 40 50 24
Av. El-hadj Monsour 44 15 17 8 64 30 36 5
Route des Niays 31 24 13 15 27 24 28 8
Rue GY-476 34 31 19 16 53 40 22 23

correlation between values obtained by the proposed system with CDRs and Google
maps with 72 = 0.4989 for all streets with a 95% confidence interval of 0.2052 to 0.7116
as shown in Table V.

7. CONCLUSION

This article proposes an adaptive HMM-based model for map matching individual
mobile phone trajectories to road segments, crossing the BTS zones. The model allows
for fine-grain map matching using by solely using mobile big data for the first time. The
model shows that stationary state transitions probabilities can be used to model the
traffic phenomena taking into consideration the sparsity in time and space intrinsic
to the mobile trajectories. Moreover, a simple maximum likelihood estimator further
adapts probabilities and improves overall accuracy. The article also proposes a fast
Viterbi decoding algorithm that exploits sparsity in transition probabilities, allowing
for linear-time complexity and real-time performance for large-scale mobile data. The
method studies a real mobile trajectories data set provided by the D4D challenge, for the
city of Dakar, Senegal. Results indicate a high correlation with various traffic models
and manual car counts from Google Maps for a sample of roads captured during the
dataset time frame. Moreover, faster than real-time processing time is achieved with
three orders of magnitude speedup over existing Viterbi implementations.

Future work will consider time-variant state transition probabilities, as well as traffic
speeds and road types in model generation and analysis; and, also, more complex state
representation and learning methods (especially for coping with seasonality in mobility
patterns). Another potential future work is to consider scaling in terms of the mobile
data size, roads (including smaller road types), and the required processing power; the
use of hardware accelerators (such as graphics processing units) is thus highly sought
for real-time processing at such a scale. Moreover, future work can include conducting
experiments with many users participating to providing GPS location information and
CDRs for more accurate validation at the (single) trip level.
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