9/2/2016

Lecture 4:
DNA Restriction Mapping

Study Chapter 4.1-4.3

Recall Restriction Enzymes

(from High-Throughput Biology Lecture)
* Restriction enzymes break DNA whenever they
encounter specific base sequences

* They occur reasonably frequently within long
sequences (a 6-base sequence target appears, on
average, 1:4096 bases)

e Can be used as molecular scissors

EcoRI EcoRT
cggtacgtggtggtghattctgtaagccgattccgcttcggggagﬁattccatgccatcatgggcgttgc
cttaag

gccatgcaccaccacttaag cattcggctaaggcgaagcccctcEE&E@gtacggtagtacccgcaacg




Restriction Enzyme Uses

¢ Recombinant DNA technology
— make novel DNA constructs,
— add fluorophores
— add other probes
* Digesting DNA into pieces that can be efficiently and reliably
replicated through PCR (Polymerase Chain Reaction)

Cutting DNA for genotyping via Microarrays
* Sequence Cloning
— Inserting sequences into a host cell, via vectors

cDNA /genomic library construction
— Coding DNA, is a byproduct of transcription
— Targeted sequencing (ex. RRBS)

DNA restriction mapping
— Arough map of a DNA fragment

DNA Restriction Maps

* A map of the

cy2Ba crydba eryltAa orf2 1S23IW  p20 aryllAapl9 cyiAa

< : : : - — - P O i "
restriction sites na - == P T
DNA sequence NN = /

* If the DNA sequence
is known, then
constructing a
restriction map is
trivial

* Restriction maps are
a cheap alternative
to sequencing for
unknown sequences

9/2/2016



Consider the DNA Mapping Problem

* Begin with an isolated strand of DNA

* Digest it with restriction enzymes

— Breaks strand into variable kb 20—
length fragments

I

L
I

* Use gel electrophoresis to sort

i
]
(1

fragments according to size o = -
_:‘:: —
— Can accurately sort DNA 1= -~
fragments that differ in length rem_m~ s
o~

by a single nucleotide, and

estimate their relative abundance
v

[

| 3
Pha
L § B

g RS B
S W

‘4 ]
o |

- 1HEll

- PN 1

* Use fragment “lengths” to . 3
Smaller @ ¢
reassemble a map of the fragments
original strand fatther

Single Enzyme Digestion

* What can be learned from a single complete
digest?

[EEN

vonN

0 1 3

v é

A

* Not much. There are many possible answers

0 4 5 10 12
0 2 6 11 12
0 5 6 8 12

9/2/2016



Double Enzyme Digestion

* An alternative approach is to digest with two
different enzymes in three stages
— First, with restriction enzyme A
— Second, with restriction enzyme B
— Third, with both enzymes, A & B

0 4 5 10 12
0 3 9 12
° > o ®
0 3 4 5 9 10 L
[ S S

3 1 1 4 1 2

* The inputs are three sets of restriction fragment
lengths [1,2,4,5], [3,3,6], [1,1,1,2,3,4]

Double Digest Problem

Given two sets of intervals on a common line segment
between two disjoint interior point sets, and a third set

of intervals between all points, reconstruct the positions
of the points.

Input:
dA - fragment lengths from the digest with enzyme A.
dB - fragment lengths from the digest with enzyme B.
dX - fragment lengths from the digest with bot/1 A and B.

Output: A - location of the cuts for the enzyme A.

B - location of the cuts for the enzyme B.

9/2/2016



Class Exercise

* Suppose you are asked to assemble a map from
three digests
— A=1[1,23] — X o
_B=[24] .
— AB=[1,1,22]
* How do you solve for the map?

L 2
L 4
4

" bg

L 4
L d
L 2
L 4
L 2
<

* How do you state your strategy as a general
purpose algorithm?

Set Permutations

* Given a set [A,B,C,D] find all permutations

[ABCD] [BACD] [CABD] [DABC]
[ABDC] [BADC] [CADB] [DAC,B]
[ACBD] [BCAD] [CBAD] [D,BAC]
[ACDB] [BCDA] [CBDA] [D,BCA]
[ADBC] [BDAC] [CDAB] [D,CAB]
[AD.CB] [BDCA] [CDBA] [D,C,BA]

* How many?

t s =
— 1* choice =n N I permutations of N elements
— 2nd choice = n-1
— 34 choice = n-2 10! = 3628800
24! = 620448401733239439360000

10

9/2/2016



9/2/2016

A Brute Force Solution

* Test all permutations of A and B checking they
are compatible with some permuation of AB

def doubleDigest(seta, setb, setab, circular = False):
a = Permute (seta)
while (a.permutationsRemain()):
ab = Permute (setab)
while (ab.permutationsRemain()):
if compatible(a.order, ab.order):
b = Permute (setb)
while (b.permutationsRemain()):
if (circular):
for i in xrange(len(setab)):
len(a)! len(b)! abShift = shift(ab.order, i)
en( )' if compatible (b.order, abShift):
return (a.order, b.order, ab.order, i)

4 else:
len(ab)! if compatible(b.order, ab.order):

return (a.order, b.order, ab.order, 0)
return (aState, bState, abState, -1)

11

How to Improve Performance?

* What strategy can we use to solve the double restriction
map problem faster?

* Is there a branch-and-bound strategy?
— Does the given code *really* test every permutation?
— How does compatible( ) help?
— Does the order of the loops help?
* Could you do all permutations of A and B, then compute
the intervals and compare to AB?

* The double digest problem is truly a hard problem (NP-
complete). No one knows an algorithm whose execution
time does not grow slower than some exponent in the
size of the inputs.

12




Partial Digestion Problem

* Another way to construct a restriction map

* Expose DNA to the restriction enzyme for a
limited amount of time to prevent it from cutting
at all restriction sites (partial digestion)

* Generates the set of all possible restriction
fragments between every pair of (not necessarily
consecutive) points

* The set of fragment sizes is used to determine the
positions of the restriction sites

* We assume that the multiplicity of a repeated
fragment can be determined, i.e., multiple
restriction fragments of the same length can be
determined (e.g., by observing twice as much
fluorescence for a double fragment than for a
single fragment)

13

Partial Digestion Illustration

* A complete set of pairwise distances between
points. In the following example a set of 10
fragments is generated.

L=1{3,5,5,89,14,14,17,19, 22}

Restriction Sites

v v

E <5> 1

<14>

(2 ¥

ded

<19>
<22>

mmom

wla

<o~

=

<14>
<17>

mmm

E =5> 1

<8>

m

1
4
1
4
1
4
F——

14

9/2/2016



9/2/2016

Pairwise Distance Matrix

e Often useful to consider

partial digests in a 0 5 14 19 22
distance matrix form 0|-|5 14 19 22
e Each entry is the distance | ° - 9 14 17
between a pair of point 14 - 5 8
positions labeled on the 19 .3
rows and columns » ]

e The distance matrix for n
points has n(n-1)/2 entries, therefore we expect
that many digest values as inputs

* Largest value in L establishes the segment length
* Actual non-zero point values are a subset of L

15

Partial Digest Problem

* Given all pairwise distances between points on a
line, reconstruct the positions of those points.

Input: A multiset of pairwise distances L,
containing @ elements

Output: A set X, of n integers, such that the set of
pairwise distances AX =L

16




Homometric Solutions

0o 1 3 4 65 7 12 13 15 o 1 3 8 9 1 12 13 15
0 13 4 5 12 15 0 T3 8 9 11 12 15
1 2 3 4 6 1 12 14 1 2 8 " 12 14
3 12 4 9 12 3 5 6 8 9 12
4 13 8 9 M 8 13 4 5
5 2 8 9 2 3 4 6
7 5 6 8 " 12 4
12 13 12 1 3
13 2 13 2
15 15

* The solution of a PDP is not always unique

* Two distinct point sets, A and B, can lead to
indistinguishable distance multisets, AA = AB

17

Brute Force PDP Algorithm

* Basic idea: Construct all combinations of # - 2
integers between 0 and max(L), and check to see
if the pairwise distances match.

Compare this
Python code to
the pseudocode
on page 88 in
def bruteForcePDP (L, n): fhe book
L.sort() 7
M = max (L)
X = intsBetween(0,M,n-2)
while (X.combinationsRemain()):
dX = allPairsDist(X.intSet())
dX.sort ()
if (d&X == L):
print "X =", X.intSet()

18

9/2/2016



9/2/2016

Set Combinations

* Combinations of A things taken B at a time

* Order is unimportant
[A,B,C]=[A,CB]=[B,AC] = [B,CA] = [CAB]=[CBA]

* All combinations of n items in k positions
[1,1,0,0], [1,0,1,01,[1,0,0,11,[0,1,1,01,[0,1,0,11,[0,0,1,1]

* Smaller than a factorial

n n!
[kj_ ki(n—k)!

. . n n n
° Interestmg relation Z(kj =2
k=0

19

BruteForcePDP Performance

* BruteForcePDP takes O(max(L) "?) time since it
must examine all possible sets of positions.

* The problem scales with the size of the largest
pairwise distance

* Suppose we multiply each element in L by a
constant factor?

* Should we consider every possible combination
of n - 2 points? (Consider our observations
concerning distance matrices)

20

10



Another Brute Force PDP Approach

* Recall that the actual point values are a subset of L’s
values. Thus, rather than consider all combinations of
possible points, we need only consider

n — 2 combinations of values from L.
Compare this

Python code to
the pseudocode

N onpage88in

def anotherBruteForcePDP(L, n): the book
L.sort() 7
M = max (L)

X = intsFromL(L,n-2)
while (X.combinationsRemain()):
dX = allPairsDist(X.intSet())

dX.sort ()
if (d&X == L):
print "X = ", X.intSet()

21

Efficiency of AnotherBruteForcePDP

* It's more efficient, but still slow

e If L ={2,998,1000} (n = 3, M = 1000),
BruteForcePDP will be extremely slow, but
AnotherBruteForcePDP will be quite fast

e Fewer sets are examined, but runtime is still
exponential: O(n?"%)
* Is there a better way? 8

22

9/2/2016

11



A Practical PDP Algorithm

1. Begin with X = {0}
2. Remove the largest element in L and
placeitin X

3. See if the element fits on the right or
left side of the restriction map

4. When it fits, find the other lengths it creates
and remove those from L

5. Go back to step 3 until L is empty

23

Defining delta(y, X)

* Before describing PartialDigest, we first define a
helper function:

delta(y, X)

as the multiset of all distances between point y
and the points in the set X

delta(y, X) ={|ly - x1 [, [y -], ..., |y =24}
ex. [3,6,11] = delta(8,[5,14,19])

24

9/2/2016

12



An Example

L={2,233405,6,78, 10}
X={0}

25

An Example

L={223,3,4,5,6,78,10}
X={0}

Remove 10 from L and insert it into X. We know this must be
the total length of the DNA sequence because it is the largest

fragment.

26

9/2/2016

13



An Example

,3,3,4,5,6,7,8, 10}

27

An Example
,3,3,4,5,6,7,8,10}

Remove 8 from L and make y = 2 or 8. But since the two cases
are symmetric, we can assume y = 2.

28

9/2/2016

14



An Example

72’3’3’4’516’7,8, }
1

Find the distances from y = 2 to other elements in X.
D(y, X) = {8, 2}, so we remove {8, 2} from L and add 2 to X.

An Example
L={22,3,34,5,6,7,8 10}
X:{O,Z,].O}

30

9/2/2016

15



An Example

,3,3,4,5,6,7,8,10}
1

Next, remove 7 from L and makey =7 ory=10-7=3.
We explore y =7 first, so delta(y, X ) = {7, 5, 3}.

0 2 10
31
An Example
L={2,23,3,45678 10}
X={0,2,10}

For y =7 first, delta(y, X ) = {7, 5, 3}. Therefore, we
remove {7, 5,3} from L and add 7 to X.

D(y, X)=1{7,5,3)={17-01, |7-2], [7-10]}

32

9/2/2016

16



An Example
L={2,2,3,3,456 }
X:{0,2,7 10}

An Example
L:{ ,2, ,3,4, ,6, y O, }
X={0,2,7,10}

Next, take 6 from L and make y = 6. Unfortunately,
delta(y, X) = {6, 4, 1 ,4}, which is not a subset of L.

Therefore, we won't explore this branch.

10

34

9/2/2016

17



An Example

This time make y = 4. delta(y, X) = {4, 2, 3,6}, which is a
subset of L, so we explore this branch. We remove
{4, 2,3 ,6} from L and add 4 to X.

An Example
L :{ y Ly Dy Ty Ty Iy, Uy 1, O }
X={0,2,4,7,10}

36

9/2/2016

18



An Example

,2,4,7,10}

L={
X={0

L is now empty, so we have a solution, which is X.

37

An Example

To find other solutions, we backtrack (remove old insertions
and try different ones).

38

9/2/2016

19



def

def

partialDigest (L) : I .
width = max (L) 1

L.remove (width) mp ementatlon
X = [0, width]

Place (L, X)

Place (L, X):

if (len(L) == 0):
print(sorted (X))
return

y = max (L) X\ Checks distances from the "0" end

dyX = delta(y, X)

if (dyX.subset(L)): <V
X.append (y) Y - This PDP algorithm
for x in dyX.items: \. outputs all solutions.

L.remove (x) In fact, it might even

Place (L, X) repeat solutions

X.remove (y) ;
for x in dyX.items:
L.append (x)
PP ¢

w = max(X) - y »‘8\ Checks distances from the "width" end
dwX = delta(w, X)

if (dwX.subset(L)):
X.append (w)
for x in dwX.items:
L.remove (x)
Place (L, X)
X.remove (w)
for x in dwX.items:
L.append (x)
return 39

Analysis

Let T(n) be the maximum time that partialDigest
takes to solve an n-point instance of PDP

If, at every step, there is only one viable solution,
then partialDigest reduces the size of the
problem by one on each recursive call

T(n) = T(n-1) + O(n) > O(n?)
However, if there are two alternatives then
T(n) = 2T(n-1) + O(n) = O(2v)

40

9/2/2016

20



Comments & Next Time

* In the book there is a reference to a polynomial
algorithm for solving PDP (pg. 115). The authors
of this paper have since posted a clarification
that their solution does not suggest a polynomial
algorithm. Therefore, the complexity of the PDP
is still unknown.

* Next Time: More Exhaustive Search problems

* Next Time: The Motif Finding Problem

41

9/2/2016

21



