
1

1

Lecture 17:
Suffix Arrays and

Burrows Wheeler Transforms

Not in Book

Recall Suffix Trees

2

2

Suffix Trees

3

Suffix Tree Summary

4

3

Suffix Arrays

5

Searching Suffix Arrays

6

4

Searching Suffix Arrays

7

Searching Suffix Arrays

8

5

Other Data Structures

• There is another trick for finding patterns in a text
string, it comes from a rather odd remapping of the
original text called a “Burrows-Wheeler Transform”
or BWT.

• BWTs have a long history. They were invented back
in the 1980s as a technique for improving lossless
compression. BWTs have recently been rediscovered
and used for DNA sequence alignments. Most
notably by the Bowtie and BWA programs for
sequence alignments.

9

String Rotation

Before describing the BWT, we need to define the
notion of Rotating a string. The idea is simple, a
rotation of i moves the prefixi, to the string’s end
making it a suffix.

Rotate(“tarheel$”, 3)  “heel$tar”

Rotate(“tarheel$”, 7)  “$tarheel”

Rotate(“tarheel$”, 1)  “arheel$t”

10

http://genomebiology.com/2009/10/3/R25%7C

6

BWT Algorithm

BWT (string text)
tablei = Rotate(text, i) for i = 0..len(text)-1
sort table alphabetically
return (last column of the table)

11

tarheel$

arheel$t

rheel$ta

heel$tar

eel$tarh

el$tarhe

l$tarhee

$tarheel

$tarheel

arheel$t

eel$tarh

el$tarhe

heel$tar

l$tarhee

rheel$ta

tarheel$

BWT(“tarheels$”) = “ltherea$”

BWT Example

BWT(‘banana$’)

12

7

BWT in Python

• This one of the simpler algorithms that we’ve seen

• Input string of length m, output a messed up string
of length m

13

def BWT(s):

create a table, with rows of all possible rotations of s

rotation = [s[i:] + s[:i] for i in xrange(len(s))]

sort rows alphabetically

rotation.sort()

return (last column of the table)

return "".join([r[-1] for r in rotation])

Inverse of BWT

A property of a transform is that there is no information
loss and they are invertible.

14

inverseBWT(string s)
add s as the first column of a table strings
repeat length(s)-1 times:

sort rows of the table alphabetically
add s as the first column of the table

return (row that ends with the 'EOF' character)

l

t

h

e

r

e

a

$

l$

ta

he

ee

rh

el

ar

$t

l$t

tar

hee

eel

rhe

el$

arh

$ta

l$ta

tarh

heel

eel$

rhee

el$t

arhe

$tar

l$tar

tarhe

heel$

eel$t

rheel

el$ta

arhee

$tarh

l$tarh

tarhee

heel$t

eel$ta

rheel$

el$tar

arheel

$tarhe

l$tarhe

tarheel

heel$ta

eel$tar

rheel$t

el$tarh

arheel$

$tarhee

l$tarhee

tarheel$

heel$tar

eel$tarh

rheel$ta

el$tarhe

arheel$t

$tarheel

8

Inverse BWT in Python

• A slightly more complicated routine

15

def inverseBWT(s):

initialize table from s

table = [c for c in s]

repeat length(s) - 1 times

for j in xrange(len(s)-1):

sort rows of the table alphabetically

table.sort()

insert s as the first column

table = [s[i]+table[i] for i in xrange(len(s))]

return (row that ends with the 'EOS' character)

return table[[r[-1] for r in table].index('$')]

How to use a BWT?
• A BWT is a “last-first” mapping meaning the ith occurrence of

a character in the first column corresponds to the ith

occurrence in the last.

• Also, recall the first column is sorted

• BWT(“mississippi$”)  “ipssm$pissii”

• Compute from BWT(s) a sorted dictionary
of the number of occurrences of each letter

N = { ‘$’:1, ‘i’:4, ‘m’:1, ‘p’:2, ‘s’:4 }

• Using N it is a simple matter to find
indices of the first occurrence of a
character on the “left” sorted side

I = { ‘$’:0, ‘i’:1, ‘m’:5, ‘p’:6, ‘s’:8 }

• We also use N to compute the
“right-hand” offsets or C-index

16

0 $mississippi 0

0 i$mississipp 0

1 ippi$mississ 0

2 issippi$miss 1

3 ississippi$m 0

0 mississippi$ 0

0 pi$mississip 1

1 ppi$mississi 1

0 sippi$missis 2

1 sissippi$mis 3

2 ssippi$missi 2

3 ssissippi$mi 3

C-index

9

Searching for a Pattern

• Find “sis” in “mississippi”

• Search for patterns take place in reverse order (last
character to first)

• Use the I index to
find the range of
entries starting with
the last character

17

$mississippi

i$mississipp

ippi$mississ

issippi$miss

ississippi$m

mississippi$

pi$mississip

ppi$mississi

sippi$missis

sissippi$mis

ssippi$missi

ssissippi$mi

I = { ‘$’:0, ‘i’:1, ‘m’:5, ‘p’:6, ‘s’:8 }

Searching for a Pattern

• Find “sis” in “mississippi”

• Of these, how many BWT entries match the second-
to-last character? If none string does
not appear

• Use the C-index to find all
offsets of occurrences of
these second to last characters,
which will be contiguous

18

$mississippi 0

i$mississipp

ippi$mississ

issippi$miss

ississippi$m

mississippi$

pi$mississip

ppi$mississi 1

sippi$missis

sissippi$mis

ssippi$missi 2

ssissippi$mi 3

10

Searching for a Pattern

• Find “sis” in “mississippi”

• Combine offsets with I index entry to narrow
search range

• Add the C-index offsets
to the I-index of the
second-to-last character to
find new search range

19

$mississippi

0 i$mississipp

1 ippi$mississ

2 issippi$miss

3 ississippi$m

mississippi$

pi$mississip

ppi$mississi

sippi$missis

sissippi$mis

ssippi$missi

ssissippi$mi

I = { ‘$’:0, ‘i’:1, ‘m’:5, ‘p’:6, ‘s’:8 }

Searching for a Pattern

• Find “sis” in “mississippi”

• Find BWT entries that match the previous
next-to-next-to-last character, ‘s’

• Use the C index to
find the offsets of
these second to last
characters

• Now we know that the string
appears in the text, but not
where

20

$mississippi

i$mississipp

ippi$mississ 0

issippi$miss 1

ississippi$m

mississippi$

pi$mississip

ppi$mississi

sippi$missis 2

sissippi$mis 3

ssippi$missi

ssissippi$mi

11

Searching for a Pattern

• Find “sis” in “mississippi”

• We can find the pattern’s offset on the left side
by combining the C index with
the I index value for the first
character

• Now, if we had a Suffix array
we could use it to find the
offset into the original text

21

$mississippi

i$mississipp

ippi$mississ

issippi$miss

ississippi$m

mississippi$

pi$mississip

ppi$mississi

0 sippi$missis

1 sissippi$mis

2 ssippi$missi

3 ssissippi$mi

I = { ‘$’:0, ‘i’:1, ‘m’:5, ‘p’:6, ‘s’:8 }

sfa = [11, 10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2]

8+1=9

Searching for a Pattern

• Find “sis” in “mississippi”

• Actually, there is an implicit suffix array
in our BWT

• We can use the last first-last
property and the C index to
thread back through the array
to find the start position

22

0 $mississippi 0

0 i$mississipp 0

1 ippi$mississ 0

2 issippi$miss 1

3 ississippi$m 0

0 mississippi$ 0

0 pi$mississip 1

1 ppi$mississi 1

0 sippi$missis 2

1 sissippi$mis 3

2 ssippi$missi 2

3 ssissippi$mi 3

0

12

Searching for a Pattern

• Find “sis” in “mississippi”

• Actually, there is an implicit suffix array
in our BWT

• We can use the last first-last
property and the C index to
thread back through the array
to find the start position

23

0 $mississippi 0

0 i$mississipp 0

1 ippi$mississ 0

2 issippi$miss 1

3 ississippi$m 0

0 mississippi$ 0

0 pi$mississip 1

1 ppi$mississi 1

0 sippi$missis 2

1 sissippi$mis 3

2 ssippi$missi 2

3 ssissippi$mi 31

Searching for a Pattern

• Find “sis” in “mississippi”

• Actually, there is an implicit suffix array
in our BWT

• We can use the last first-last
property and the C index to
thread back through the array
to find the start position

24

0 $mississippi 0

0 i$mississipp 0

1 ippi$mississ 0

2 issippi$miss 1

3 ississippi$m 0

0 mississippi$ 0

0 pi$mississip 1

1 ppi$mississi 1

0 sippi$missis 2

1 sissippi$mis 3

2 ssippi$missi 2

3 ssissippi$mi 3

2

13

Searching for a Pattern

• Find “sis” in “mississippi”

• Actually, there is an implicit suffix array
in our BWT

• We can use the last first-last
property and the C index to
thread back through the array
to find the start position

25

0 $mississippi 0

0 i$mississipp 0

1 ippi$mississ 0

2 issippi$miss 1

3 ississippi$m 0

0 mississippi$ 0

0 pi$mississip 1

1 ppi$mississi 1

0 sippi$missis 2

1 sissippi$mis 3

2 ssippi$missi 2

3 ssissippi$mi 3

3

• We’re done. The text offset is 3.

BWT Compression

26

14

Summary

• Query Power (Big is good)

– BWTs support the fewest query types of these
data structs

– Suffix Trees perform
a variety of queries
in O(m)

27

Suffix Trees

Augmented Suffix Arrays

Suffix Arrays

BWT

Summary

• Memory Footprint (Small is good)

– BWTs compress very well on real data

– Difficult to store
the full
suffix
tree
for an
entire
genome

28

Suffix Trees

Augmented Suffix Arrays

Suffix Arrays

BWT

15

Comparison

29

Let m = len(Genome)
Let d = len (longestPattern)
Let x = # of Patterns

Tools using BWT in Exact
Pattern Matching

30

16

FM-Index

31

FM-Index

32

17

Find Predecessor Suffix

33

Suffix Recovery

34

18

Find k-mer

35

Find k-mer

36

19

find(“AGG”, F, 0)

37

Practical Adaptations

38

