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Lecture 17:
Suffix Arrays and 

Burrows Wheeler Transforms

Not in Book

Recall Suffix Trees
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Suffix Trees
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Suffix Tree Summary
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Suffix Arrays
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Searching Suffix Arrays
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Searching Suffix Arrays
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Searching Suffix Arrays
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Other Data Structures

• There is another trick for finding patterns in a text 
string, it comes from a rather odd remapping of the 
original text called a “Burrows-Wheeler Transform” 
or BWT.

• BWTs have a long history. They were invented back 
in the 1980s as a technique for improving lossless 
compression. BWTs have recently been rediscovered 
and used for DNA sequence alignments. Most 
notably by the Bowtie and BWA programs for 
sequence alignments. 
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String Rotation

Before describing the BWT, we need to define the 
notion of Rotating a string. The idea is simple, a 
rotation of i moves the prefixi, to the string’s end 
making it a suffix. 

Rotate(“tarheel$”, 3)  “heel$tar”

Rotate(“tarheel$”, 7)  “$tarheel”

Rotate(“tarheel$”, 1)  “arheel$t”
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http://genomebiology.com/2009/10/3/R25%7C
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BWT Algorithm

BWT (string text) 
tablei = Rotate(text, i) for i = 0..len(text)-1 
sort table alphabetically
return (last column of the table)

11

tarheel$

arheel$t

rheel$ta

heel$tar

eel$tarh

el$tarhe

l$tarhee

$tarheel

$tarheel

arheel$t

eel$tarh

el$tarhe

heel$tar

l$tarhee

rheel$ta

tarheel$

BWT(“tarheels$”) = “ltherea$”

BWT Example

BWT(‘banana$’)
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BWT in Python

• This one of the simpler algorithms that we’ve seen

• Input string of length m, output a messed up string 
of length m
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def BWT(s):

# create a table, with rows of all possible rotations of s

rotation = [s[i:] + s[:i] for i in xrange(len(s))] 

# sort rows alphabetically

rotation.sort() 

# return (last column of the table)

return "".join([r[-1] for r in rotation])

Inverse of BWT

A property of a transform is that there is no information 
loss and they are invertible.
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inverseBWT(string s)
add s as the first column of a table strings
repeat length(s)-1 times:

sort rows of the table alphabetically
add s as the first column of the table     

return (row that ends with the 'EOF' character)
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heel$t
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rheel$
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Inverse BWT in Python

• A slightly more complicated routine
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def inverseBWT(s):

# initialize table from s

table = [c for c in s]

# repeat length(s) - 1 times

for j in xrange(len(s)-1):

# sort rows of the table alphabetically

table.sort()

# insert s as the first column

table = [s[i]+table[i] for i in xrange(len(s))]

# return (row that ends with the 'EOS' character)

return table[[r[-1] for r in table].index('$')]

How to use a BWT?
• A BWT is a “last-first” mapping meaning the ith occurrence of 

a character in the first column corresponds to the ith

occurrence in the last.

• Also, recall the first column is sorted

• BWT(“mississippi$”)  “ipssm$pissii”

• Compute from BWT(s) a sorted dictionary 
of the number of occurrences of each letter

N = { ‘$’:1, ‘i’:4, ‘m’:1, ‘p’:2, ‘s’:4 }

• Using N it is a simple matter to find
indices of the first occurrence of a 
character on the “left” sorted side

I = { ‘$’:0, ‘i’:1, ‘m’:5, ‘p’:6, ‘s’:8 } 

• We also use N to compute the 
“right-hand” offsets or C-index
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0 $mississippi 0

0 i$mississipp 0

1 ippi$mississ 0

2 issippi$miss 1

3 ississippi$m 0

0 mississippi$ 0

0 pi$mississip 1

1 ppi$mississi 1

0 sippi$missis 2

1 sissippi$mis 3

2 ssippi$missi 2

3 ssissippi$mi 3

C-index
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Searching for a Pattern

• Find “sis” in “mississippi”

• Search for patterns take place in reverse order (last 
character to first)

• Use the I index to 
find the range of 
entries starting with 
the last character
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$mississippi

i$mississipp

ippi$mississ

issippi$miss

ississippi$m

mississippi$

pi$mississip

ppi$mississi

sippi$missis

sissippi$mis

ssippi$missi

ssissippi$mi

I = { ‘$’:0, ‘i’:1, ‘m’:5, ‘p’:6, ‘s’:8 } 

Searching for a Pattern

• Find “sis” in “mississippi”

• Of these, how many BWT entries match the second-
to-last character? If none string does
not appear

• Use the C-index to find all 
offsets of occurrences of
these second to last characters,
which will be contiguous  
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$mississippi 0

i$mississipp

ippi$mississ

issippi$miss

ississippi$m

mississippi$

pi$mississip

ppi$mississi 1

sippi$missis

sissippi$mis

ssippi$missi 2

ssissippi$mi 3
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Searching for a Pattern

• Find “sis” in “mississippi”

• Combine offsets with I index entry to narrow
search range

• Add the C-index offsets 
to the I-index of the
second-to-last character to
find new search range 
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$mississippi

0 i$mississipp

1 ippi$mississ

2 issippi$miss

3 ississippi$m

mississippi$

pi$mississip

ppi$mississi

sippi$missis

sissippi$mis

ssippi$missi

ssissippi$mi

I = { ‘$’:0, ‘i’:1, ‘m’:5, ‘p’:6, ‘s’:8 } 

Searching for a Pattern

• Find “sis” in “mississippi”

• Find BWT entries that match the previous 
next-to-next-to-last character, ‘s’

• Use the C index to 
find the offsets of 
these second to last
characters

• Now we know that the string
appears in the text, but not
where
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$mississippi

i$mississipp

ippi$mississ 0

issippi$miss 1

ississippi$m

mississippi$

pi$mississip

ppi$mississi

sippi$missis 2

sissippi$mis 3

ssippi$missi

ssissippi$mi
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Searching for a Pattern

• Find “sis” in “mississippi”

• We can find the pattern’s offset on the left side
by combining the C index with
the I index value for the first
character

• Now, if we had a Suffix array
we could use it to find the
offset into the original text
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$mississippi

i$mississipp

ippi$mississ

issippi$miss

ississippi$m

mississippi$

pi$mississip

ppi$mississi

0 sippi$missis

1 sissippi$mis

2 ssippi$missi

3 ssissippi$mi

I = { ‘$’:0, ‘i’:1, ‘m’:5, ‘p’:6, ‘s’:8 } 

sfa = [11, 10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2]

8+1=9

Searching for a Pattern

• Find “sis” in “mississippi”

• Actually, there is an implicit suffix array
in our BWT

• We can use the last first-last
property and the C index to 
thread back through the array 
to find the start position 
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0 $mississippi 0

0 i$mississipp 0

1 ippi$mississ 0

2 issippi$miss 1

3 ississippi$m 0

0 mississippi$ 0

0 pi$mississip 1

1 ppi$mississi 1

0 sippi$missis 2

1 sissippi$mis 3

2 ssippi$missi 2

3 ssissippi$mi 3

0
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Searching for a Pattern

• Find “sis” in “mississippi”

• Actually, there is an implicit suffix array 
in our BWT

• We can use the last first-last
property and the C index to 
thread back through the array 
to find the start position 
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0 $mississippi 0

0 i$mississipp 0

1 ippi$mississ 0

2 issippi$miss 1

3 ississippi$m 0

0 mississippi$ 0

0 pi$mississip 1

1 ppi$mississi 1

0 sippi$missis 2

1 sissippi$mis 3

2 ssippi$missi 2

3 ssissippi$mi 31

Searching for a Pattern

• Find “sis” in “mississippi”

• Actually, there is an implicit suffix array 
in our BWT

• We can use the last first-last
property and the C index to 
thread back through the array 
to find the start position 
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0 $mississippi 0

0 i$mississipp 0

1 ippi$mississ 0

2 issippi$miss 1

3 ississippi$m 0

0 mississippi$ 0

0 pi$mississip 1

1 ppi$mississi 1

0 sippi$missis 2

1 sissippi$mis 3

2 ssippi$missi 2

3 ssissippi$mi 3

2
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Searching for a Pattern

• Find “sis” in “mississippi”

• Actually, there is an implicit suffix array 
in our BWT

• We can use the last first-last
property and the C index to 
thread back through the array 
to find the start position 
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0 $mississippi 0

0 i$mississipp 0

1 ippi$mississ 0

2 issippi$miss 1

3 ississippi$m 0

0 mississippi$ 0

0 pi$mississip 1

1 ppi$mississi 1

0 sippi$missis 2

1 sissippi$mis 3

2 ssippi$missi 2

3 ssissippi$mi 3
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• We’re done. The text offset is 3.

BWT Compression
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Summary

• Query Power (Big is good)

– BWTs support the fewest query types of these
data structs

– Suffix Trees perform
a variety of queries
in O(m)
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Suffix Trees

Augmented Suffix Arrays

Suffix Arrays

BWT

Summary

• Memory Footprint (Small is good)

– BWTs compress very well on real data

– Difficult to store
the full
suffix
tree
for an
entire
genome
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Suffix Trees

Augmented Suffix Arrays

Suffix Arrays

BWT
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Comparison
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Let m = len(Genome)
Let d = len (longestPattern)
Let x = # of Patterns

Tools using BWT in Exact 
Pattern Matching
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FM-Index
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FM-Index
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Find Predecessor Suffix
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Suffix Recovery

34



18

Find k-mer
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Find k-mer
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find(“AGG”, F, 0)
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Practical Adaptations
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