Lecture 22: Perfect Phylogeny

Not in textbook

Outline

- Thus far
- distance-based evolutionary trees
- Additive to guarantee that the tree would produce all pairwise distances, but not all distance matrices are additive
- Sequences \rightarrow Distances \boldsymbol{y} Sequences
- character-based evolutionary trees
- Trees directly from sequences
- The most general version is hard (Large parsimony)
- Infinite Sites Model
- Perfect Phylogeny
- Local vs Global Phylogenetic Trees

Character State Matrix M

- M has n rows (samples)
- M has m columns (characters)
- $\mathrm{Mij}_{\mathrm{ij}}$ denotes the state object i has for character j
- Sequence Diversity Patterns (SDPs) often reoccur

Infinite Sites Model

- Assumes mutations are rare events
- Assumes DNA sequences are large
- Multiple mutations at the same site are extremely rare
- Infinite Sites Model assumes that multiple mutations never occur at the same sequence position

- Thus, all states are
"Binary" or "Biallelic"

A Different Kind of Tree

- Unrooted "Perfect Phylogeny" Tree
- Nodes correspond to sample sequences (haplotypes), both current and ancestral
- Edges correspond to actual mutations (SNPs)
- Removal of an edge creates a bipartition (each part is distinguished by a character at some position)
- SDPs can occur multiple times, and their frequency can be used as a edge
 weight
- Tree leaves correspond to mutations (allele variants) that are unique to a sequence, i.e. a SDP with only one minority allele instance, a singleton

Unrooted Trees

- Unrooted phylogenetic trees are less specific than evolutionary trees
- The edges are undirected, thus the direction from ancestor to descendent are unknown
- All but one leaf, however, and possibly all leafs (if the root is an interior node) must be descendants
- Slightly fewer labeled unrooted trees than labeled rooted tree

$$
u T(n)=\frac{(2 n-4)!}{2^{n-2}(n-2)!} \quad \text { vs } \quad T(n)=\frac{(2 n-3)!}{2^{n-2}(n-2)!}
$$

- Moreover, any node can be a sample in a phylogenetic tree whereas only a leaf node can be a sample in an evolutionary tree

Unrooted Binary Tree

Three different evolutionary (rooted) trees that are consistent with a common phylogenetic (unrooted) tree

Building a Phylogenetic Tree

- Assume we only have direct access to current haplotypes
- Construct a pair-wise distance matrix between haplotypes using Hamming distances
- Add smallest edge between all nodes which do not introduce a loop
- If the smallest distance is greater than 1 add d-1 "hidden" nodes between the pair so that adjacent

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$
H_{1}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
H_{2}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
H_{3}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
H_{4}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$

- Augment the distance matrix with the new nodes and claim the introduced edges
- Repeat finding the smallest distance, and augmenting until the graph is connected

Four-Gamete Test

- Our tree construction method will not work for any arbitrary set of character sequences; it only works for those that satisfy the assumptions of the infinite sites model
- Under the assumption of the infinite sites model all SNP pairs exhibit the property no more that 3 out of the possible 4 allele combinations occur
- Direct consequence of only one mutation per site
- Showing that all SNP pair combinations satisfy the four gamete test is a necessary and sufficient condition for there to exist a perfect phylogeny tree

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$
H_{1}	1	1	0	0	0
H_{2}	1	1	0	1	0
H_{3}	0	0	0	0	1
H_{4}	0	0	1	0	0

Questions

- Does there exist SDPs that are compatible with all others?

Singleton SNPs are compatible with any other SNP

- Given N distinct haplotype sequences resulting from an infinite sites model what is minimum number of SDPs?

N -1 edges are the fewest necessary to connect N haplotypes into a "linear" tree. How many singleton SNPs occur in such a tree? 2

- Given N distinct haplotype sequences resulting from an infinite sites model what is maximum number of SDPs?
$2 N-3$ edges, the number of edges in an unrooted tree with N leaves

Exercise

- Consider the following SNP panel

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$
H_{1}	0	0	1	0	0	1
H_{2}	0	0	1	0	0	0
H_{3}	0	1	0	0	0	0
H_{4}	1	0	0	0	1	0
H_{5}	1	0	0	1	0	0

- Satisfies the four gamete test?
- Construct the tree
- Is the SDP 11001^{T} possible?

Complications

- There are two issues that limit the use of Perfect

Phylogeny, both are violations of our infinite-sites model assumptions

- In addition to mutations, haplotype diversity is generated by recombination, exchange of subsequences between haplotypes

- Mutations reoccur at the same position (Homoplasy)
- Thus, global (over the entire genome) perfect phylogenies are rare, but local perfect phylogenies are common
- How do we locate recombinations and recurrent mutations?

Non-sequence Complications

- Evolutionary Convergence:
- Wings on birds and bats
- Fins on Seals and Fish
- Evolutionary Reversals:

- Fish \rightarrow Lizard \rightarrow Snake
- Fish \rightarrow Manatee \rightarrow Whale (gain and loss of legs)
- Such paths also violate the infinite sites model

SNP Compatibility

- How do we find local genomic regions where our assumptions are valid?
- Apply 4-gamete test
- Issues
- Can we efficiently find all compatibility intervals
- How many intervals?
(fewest necessary to cover the entire genome)
- Unique?

- Common properties

Algorithms

- Left-to-right scan
- Is this solution unique?

Algorithms

- Left-to-right scan
- Is this solution unique? No.
- Right-to-Left scan
- Given that the solution is not unique, which do we choose?
- The most parsimonious

Algorithms

- Questions
- Of all scans, which has the fewest intervals?
- Is there a solution with fewer intervals?
- What is a better solution?
- Clearly the intervals could be larger
- What is the maximal size of the intervals?

Algorithms

- Theorem
- Left-to-right and right-to-left scans have the same number of intervals, k
- k is the minimum number of intervals possible

Cores

- The interval overlaps tell us something important
- Pair the L-R and R-L scan intervals from left to right. The overlap of these pairs are the interval cores.
- The $i^{\text {th }}$ core essentially is the SNPs that the $i^{\text {th }}$ interval of the L-R and R -L scan agree should be included in the $i^{\text {th }}$ interval of any minimal set of intervals
- A refinement of Parsimonious:
- Use this to find the minimal set of maximally-sized intervals

Uber Scan

- But first, lets backup momentarily
- The left-to-right scan found a minimal set of nonoverlapping intervals
- Can we find the set of all intervals of maximal size?
- These were clearly not found in our left-to-right or right-to-left scans

Uber Scan

- Simple modification to the left-to-right scan algorithm
- Instead of restarting when an incompatibility is found, only remove a portion of it
- Specifically remove everything before (in the scanning direction) and including the closest newly introduced incompatibility
- Open a new interval starting at the first SNP in the queue
- Continue as before

21

Uber Scan

- Properties
- Will contain more than the minimal number of intervals, k
- Each interval is maximal in size (bounded on each side by an incompatibility)
- Maintains a linear runtime

Max- k cover

- Minimal set of k maximally-sized intervals
- Must be a subset of the Uber scan, since Uber includes all intervals of maximal size
- Search all subsets of size k ?
$\binom{$ Uber }{$k}$
- No. Combinatorial Explosion
- Instead restructure the problem as a graph problem

Max- k cover

- Minimal set of k maximally-sized intervals
- We know any minimal set must include the cores
- Find all intervals from the Uber scan that overlap each core
- Construct a k-partite graph
- Vertices are intervals
- Edges are weighted with the amount of overlap
- Solve for maximal path (dynamic program)

Max- k cover

- Properties

- May not be unique
- Theoretical runtime $O(k u)$, where u is the number of intervals in Uber scan
- In practice, we never see more than 3 intervals in any part, thus $O(k)$

25

Uses

- Phylogeny trees
- Represent the data with the fewest possible trees
- Maximal intervals provide maximal support for each tree
- Recombination
- k gives us a lower bound on the minimum number of recombinations needed to make the dataset
- Although, not very tight
- But it scales to large datasets

Critical SNPs

- How stable are these intervals?

- If we remove any given SNP, will the minimal number of intervals needed, k, be reduced?
- Algorithm
- Only consider the flagging SNPs of the Uber intervals
- These intervals are bounded by incompatibilities, if they are not removed, the interval cannot change
 size

Some Context

Chromosome 14

Local to Global Trees

- Given a forest of local phylogeny trees, how do we construct a global tree?
- Generally, by combining tree metrics (Sum of distances from i to j) across all trees and then applying either neighbor joining or UPMGA
- Evolution is more complicated than a simple tree
- Common introgressions near species splits
- Gene flows when branches interact

Reference

- Jeremy Wang, Kyle J Moore, Qi Zhang, Fernando PardoManuel de Villena, Wei Wang, Leonard
McMillan. Genome-wide compatible SNP intervals and their properties. ACM Bioinformatics and Computational Biology 2010.

