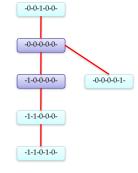
Lecture 22: Perfect Phylogeny

Not in textbook

1

Outline


- Thus far
 - distance-based evolutionary trees
 - Additive to guarantee that the tree would produce all pairwise distances, but not all distance matrices are additive
 - Sequences → Distances → Sequences
 - character-based evolutionary trees
 - Trees directly from sequences
 - The most general version is hard (Large parsimony)
- Infinite Sites Model
- Perfect Phylogeny
- Local vs Global Phylogenetic Trees

• M has n rows (samples) • M has m columns (characters) • Mij denotes the state object i has for character j • Sequence Diversity Patterns (SDPs) often reoccur same SDP Character State Matrix M U: AGGGCATC V: TAGCCCAT W: TAGACTTT X: TGCACAAC Y: TGCGCTTC

Infinite Sites Model Assumes mutations are rare events Assumes DNA sequences are large -0-0-0-0- Multiple mutations at -1-0-0-0-0the same site are -1-1-0-0-0extremely rare • Infinite Sites Model -0-0-1-0-0assumes that multiple mutations never occur at the same sequence position -1-1-0-0-0--1-1-0-1-0- -0-0-0-1--0-0-1-0-0- Thus, all states are "Binary" or "Biallelic"

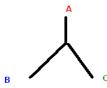
A Different Kind of Tree

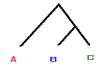
- Unrooted "Perfect Phylogeny" Tree
- Nodes correspond to sample sequences (haplotypes), both current and ancestral
- Edges correspond to actual mutations (SNPs)
- Removal of an edge creates a bipartition (each part is distinguished by a character at some position)
- SDPs can occur multiple times, and their frequency can be used as a edge weight

• Tree leaves correspond to mutations (allele variants) that are unique to a sequence, i.e. a SDP with only one minority allele instance, a *singleton*

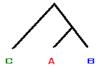
5

Unrooted Trees

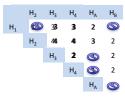

- Unrooted phylogenetic trees are less specific than evolutionary trees
- The edges are undirected, thus the direction from ancestor to descendent are unknown
- All but one leaf, however, and possibly all leafs (if the root is an interior node) must be descendants
- Slightly fewer labeled unrooted trees than labeled rooted tree

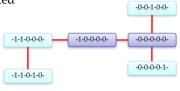

$$uT(n) = \frac{(2n-4)!}{2^{n-2}(n-2)!}$$
 vs $T(n) = \frac{(2n-3)!}{2^{n-2}(n-2)!}$

 Moreover, any node can be a sample in a phylogenetic tree whereas only a leaf node can be a sample in an evolutionary tree


Unrooted Binary Tree

Three different evolutionary (rooted) trees that are consistent with a common phylogenetic (unrooted) tree





7

Building a Phylogenetic Tree

- Assume we only have direct access to current haplotypes
- Construct a pair-wise distance matrix between haplotypes using Hamming distances
- Add smallest edge between all nodes which do not introduce a loop
- If the smallest distance is greater than 1 add d-1
 "hidden" nodes between the pair so that adjacent nodes have a hamming distance of 1
- Augment the distance matrix with the new nodes and claim the introduced edges
- Repeat finding the smallest distance, and augmenting until the graph is connected

Four-Gamete Test

- Our tree construction method will not work for any arbitrary set of character sequences; it only works for those that satisfy the assumptions of the infinite sites model
- Under the assumption of the infinite sites model all SNP pairs exhibit the property no more that 3 out of the possible 4 allele combinations occur
- Direct consequence of only one mutation per site
- Showing that all SNP pair combinations satisfy the four gamete test is a *necessary* and *sufficient* condition for there to exist a perfect phylogeny tree

9

Questions

 Does there exist SDPs that are compatible with all others?

Singleton SNPs are compatible with any other SNP

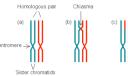
• Given N distinct haplotype sequences resulting from an infinite sites model what is minimum number of SDPs?

N-1 edges are the fewest necessary to connect N haplotypes into a "linear" tree. How many singleton SNPs occur in such a tree? 2

 Given N distinct haplotype sequences resulting from an infinite sites model what is maximum number of SDPs?

2N-3 edges, the number of edges in an unrooted tree with N leaves

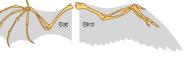
Exercise

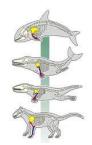

Consider the following SNP panel

- Satisfies the four gamete test?
- Construct the tree
- Is the SDP 11001^T possible?

11

Complications

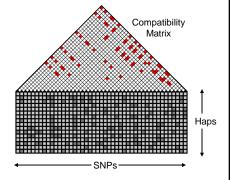

- There are two issues that limit the use of Perfect Phylogeny, both are violations of our infinite-sites model assumptions
 - In addition to mutations, haplotype diversity is generated by recombination, exchange of subsequences between haplotypes



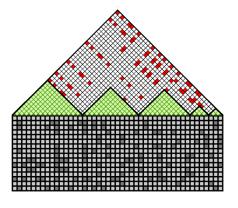
- Mutations reoccur at the same position (Homoplasy)
- Thus, global (over the entire genome) perfect phylogenies are rare, but local perfect phylogenies are common
- How do we locate recombinations and recurrent mutations?

Non-sequence Complications

- Evolutionary Convergence:
 - Wings on birds and bats
 - Fins on Seals and Fish
- Evolutionary Reversals:
 - Fish → Lizard → Snake
 - Fish → Manatee → Whale (gain and loss of legs)
- Such paths also violate the infinite sites model

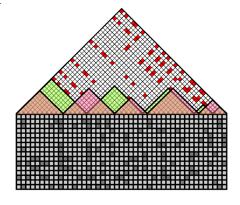


13

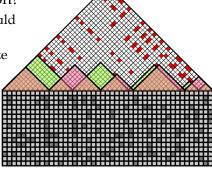

SNP Compatibility

- How do we find local genomic regions where our assumptions are valid?
- Apply 4-gamete test
- Issues
 - Can we efficiently find all compatibility intervals
 - How many intervals?
 (fewest necessary to cover the entire genome)
 - Unique?
 - Common properties

Algorithms

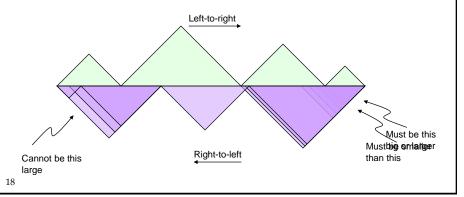

- Left-to-right scan
- Is this solution unique?

15

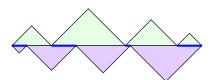

Algorithms

- Left-to-right scan
- Is this solution unique? **No.**
- Right-to-Left scan
- Given that the solution is not unique, which do we choose?
- The most parsimonious

Algorithms


- Questions
 - Of all scans, which has the fewest intervals?
 - Is there a solution with fewer intervals?
- What is a better solution?
 - Clearly the intervals could be larger
 - What is the maximal size of the intervals?

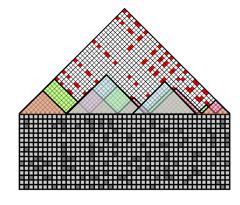
17


Algorithms

- Theorem
 - Left-to-right and right-to-left scans have the same number of intervals, k
 - -k is the minimum number of intervals possible

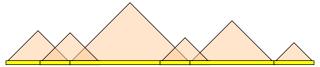
Cores

- The interval overlaps tell us something important
 - Pair the L-R and R-L scan intervals from left to right. The overlap of these pairs are the interval cores.
 - The *i* th *core* essentially is the SNPs that the *i* th interval of the L-R and R-L scan agree should be included in the *i* th interval of any minimal set of intervals
 - A refinement of Parsimonious:
 - Use this to find the minimal set of maximally-sized intervals



as:

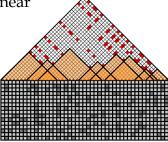
19


Uber Scan

- But first, lets backup momentarily
 - The left-to-right scan found a minimal set of nonoverlapping intervals
 - Can we find the set of all intervals of maximal size?
 - These were clearly not found in our left-to-right or right-to-left scans

Uber Scan

- Simple modification to the left-to-right scan algorithm
 - Instead of restarting when an incompatibility is found, only remove a portion of it
 - Specifically remove everything before (in the scanning direction) and including the closest newly introduced incompatibility
 - Open a new interval starting at the first SNP in the queue
 - Continue as before



21

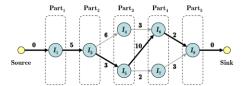
Uber Scan

- Properties
 - Will contain more than the minimal number of intervals, k
 - Each interval is maximal in size (bounded on each side by an incompatibility)

Maintains a linear runtime

Max-k cover

- Minimal set of *k* maximally-sized intervals
 - Must be a subset of the Uber scan, since Uber includes all intervals of maximal size
 - Search all subsets of size k?


 $\begin{pmatrix} |Uber| \\ k \end{pmatrix}$

- No. Combinatorial Explosion
- Instead restructure the problem as a graph problem

23

Max-k cover

- Minimal set of *k* maximally-sized intervals
 - We know any minimal set must include the cores
 - Find all intervals from the Uber scan that overlap each core
 - Construct a *k*-partite graph
 - Vertices are intervals
 - · Edges are weighted with the amount of overlap
 - Solve for maximal path (dynamic program)

Max-k cover

- Properties
 - May not be unique
 - Theoretical runtime O(ku), where u is the number of intervals in Uber scan

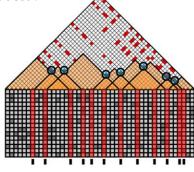
– In practice, we never see more than 3 intervals in any part, thus O(k)

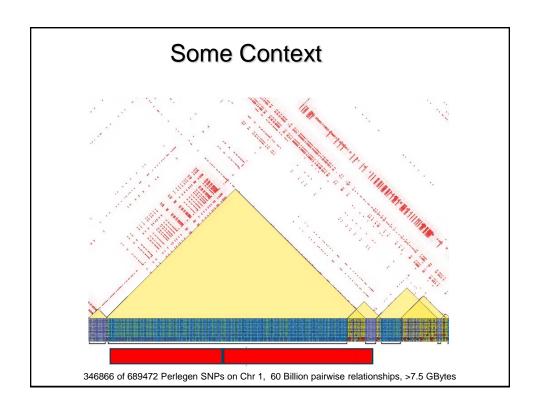
25

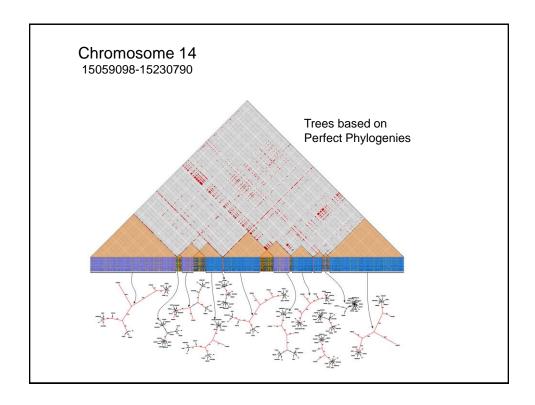
Uses

- Phylogeny trees
 - Represent the data with the fewest possible trees
 - Maximal intervals provide maximal support for each tree
- Recombination
 - − *k* gives us a lower bound on the minimum number of recombinations needed to make the dataset
 - Although, not very tight
 - But it scales to large datasets

Critical SNPs


• How stable are these intervals?


• If we remove any given SNP, will the minimal number of intervals needed, *k*, be reduced?


Algorithm

 Only consider the flagging SNPs of the Uber intervals

> These intervals are bounded by incompatibilities, if they are not removed, the interval cannot change size

Local to Global Trees

- Given a forest of local phylogeny trees, how do we construct a global tree?
- Generally, by combining tree metrics (Sum of distances from *i* to *j*) across all trees and then applying either neighbor joining or UPMGA
- Evolution is more complicated than a simple tree
 - Common introgressions near species splits
 - Gene flows when branches interact

Reference

 Jeremy Wang, Kyle J Moore, Qi Zhang, Fernando Pardo-Manuel de Villena, Wei Wang, Leonard McMillan. Genome-wide compatible SNP intervals and their properties. ACM Bioinformatics and Computational Biology 2010.