COMP 465 Data Mining Similarity of Data Data Preprocessing Slides Adapted From: Jiawei Han, Micheline Kamber & Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Rhodes College

COMP 465: Data Mining Spring 2015

Similarity and Dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are
 - Value is higher when objects are more alike
 - Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- · Proximity refers to a similarity or dissimilarity

cc

Data Matrix and Dissimilarity Matrix

- · Data matrix
 - n data points with p dimensions
 - Two modes

$$\begin{bmatrix} x_{11} & ... & x_{1f} & ... & x_{1p} \\ ... & ... & ... & ... & ... \\ x_{i1} & ... & x_{if} & ... & x_{ip} \\ ... & ... & ... & ... & ... \\ x_{n1} & ... & x_{nf} & ... & x_{np} \end{bmatrix}$$

- Dissimilarity matrix
 - n data points, but registers only the distance
 - A triangular matrix
 - Single mode

1/15/2015

 $\begin{bmatrix} 0 \\ d(2,I) & 0 \\ d(3,I) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$

COMP 465: Data Mining Spring 2015

- Proximity Measure for Nominal Attributes
- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - creating a new binary attribute for each of the M nominal states

1/15/2015

COMP 465: Data Mining Spring 2015

Proximity Measure for Binary Attributes sum · A contingency table for binary q+rs+tsum q+s r+t $d(i,j) = \frac{r+s}{q+r+s+t}$ · Distance measure for symmetric binary variables: Distance measure for $d(i,j) = \frac{r+s}{q+r+s}$ asymmetric binary variables: • Jaccard coefficient (similarity $sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$ measure for asymmetric binary variables):

Distance on Numeric Data: Minkowski Distance Minkowski distance: A popular distance measure d(i, j) = ^h√|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + ··· + |x_{ip} - x_{jp}|^h where i = (x_{i1}, x_{i2}, ..., x_{ip}) and j = (x_{j1}, x_{j2}, ..., x_{jp}) are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm) Properties - d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness) - d(i, j) = d(j, i) (Symmetry) - d(i, j) ≤ d(i, k) + d(k, j) (Triangle Inequality) A distance that satisfies these properties is a metric (Phodos College College 2013)

Ordinal Variables

- An ordinal variable can be discrete or continuous
- · Order is important, e.g., rank
- · Can be treated like interval-scaled
 - replace x_{if} by their rank

 $r_{if} \in \{1, ..., M_f\}$

 map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

compute the dissimilarity using methods for interval-scaled variables
 Rhodes College

1/15/2015

MP 465: Data Minin

Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

-f is binary or nominal:

 $d_{ij}^{(f)} = 0$ if $x_{if} = x_{if}$, or $d_{ij}^{(f)} = 1$ otherwise

- -f is numeric: use the normalized distance
- f is ordinal
 - Compute ranks r_{if} and
 - Treat z_{if} as interval-scaled

$$Z_{if} = \frac{r_{if} - 1}{M_{-1}}$$

Cosine Similarity

 A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If $d_{\scriptscriptstyle 1}$ and $d_{\scriptscriptstyle 2}$ are two vectors (e.g., term-frequency vectors), then

$$\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$$
, where \bullet indicates vector dot product, $||d||$: the length of vector d

1/15/201

OMP 465: Data Mini

Rhodes College

Example: Cosine Similarity

- $\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$, where • indicates vector dot product, ||d|: the length of vector d
- Ex: Find the similarity between documents 1 and 2.

 $d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$ $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

 $\begin{array}{l} d_1 \bullet d_2 = 5^*3 + 0^*0 + 3^*2 + 0^*0 + 2^*1 + 0^*1 + 0^*1 + 2^*1 + 0^*0 + 0^*1 = 25 \\ ||d_1|| = (5^*5 + 0^*0 + 3^*3 + 0^*0 + 2^*2 + 0^*0 + 0^*0 + 2^*2 + 0^*0 + 0^*0)^{0.5} = (42)^{0.5} = 6.481 \\ ||d_2|| = (3^*3 + 0^*0 + 2^*2 + 0^*0 + 1^*1 + 1^*1 + 0^*0 + 1^*1 + 0^*0 + 1^*1)^{0.5} = (17)^{0.5} \\ \cos(d_y, d_2)| = 0.94 \end{array}$

1/15/201

COMP 465: Data Mining Spring 2015

Summary

- Data attribute types: nominal, binary, ordinal, interval-scaled, ratioscaled
- · Many types of data sets, e.g., numerical, text, graph, Web, image.
- · Gain insight into the data by:
 - Basic statistical data description: central tendency, dispersion, graphical displays
 - Data visualization: map data onto graphical primitives
 - Measure data similarity
- · Above steps are the beginning of data preprocessing
- Many methods have been developed but still an active area of research

/15/2015

MP 465: Data Minin Spring 2015 Data?

Data Quality: Why Preprocess the

- · Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable, ...
 - Consistency: some modified but some not, dangling, ...
 - Timeliness: timely update?
 - Believability: how trustable the data are correct?
 - Interpretability: how easily the data can be understood?

Rhodes College

1/15/2015

Rhodes College

MP 465: Data Mining

Data Cleaning

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
 - <u>incomplete</u>: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., Occupation = "" (missing data)
 - noisy: containing noise, errors, or outliers
 - e.g., Salary = "-10" (an error)
 - inconsistent: containing discrepancies in codes or names, e.g.,
 - Age = "42", Birthday = "03/07/2010"
 - Was rating "1, 2, 3", now rating "A, B, C"
 - discrepancy between duplicate records
 - Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

Incomplete (Missing) Data

- · Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- · Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- Missing data may need to be inferred

5/2015 COMP 465

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible?
- · Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class:
 - the most probable value: inference-based such as Bayesian formula or decision tree

Rhodes College

1/15/2015

MP 465: Data Mining

Noisy Data

- Noise: random error or variance in a measured variable
- · Incorrect attribute values may be due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention
 - Other data problems which require data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

1/15/201

COMP 465: Data Minin Spring 2015

How to Handle Noisy Data?

- Binnin
 - first sort data and partition into (equal-frequency) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - smooth by fitting the data into regression functions
- smooth IClustering
- detect and remove outliers
- · Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

1/15/2015

OMP 465: Data Mining

Rhodes College

Data Cleaning as a Process

- Data discrepancy detection
 - Use metadata (e.g., domain, range, dependency, distribution)
 - Check field overloading
 - Check uniqueness rule, consecutive rule and null rule
 - Use commercial tools
 - Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
 - Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)
- Data migration and integration
 - Data migration tools: allow transformations to be specified
 - ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface
- Integration of the two processes
 - Iterative and interactive

Data Integration

- Data integration:
 - Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id \equiv B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are
 - Possible reasons: different representations, different scales, e.g., metric

Rhodes College

Handling Redundancy in Data Integration

- Redundant data occur often when you integrate multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by correlation analysis and covariance analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Rhodes College

Correlation Analysis (Nominal Data)

· X² (chi-square) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- The larger the X² value, the more likely the variables are related
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
- Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Rhodes College

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

• X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

It shows that like science fiction and play chess are correlated in the group

Correlation Analysis (Numeric Data)

Correlation coefficient (also called Pearson's product moment coefficient)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n \overline{A} \overline{B}}{(n-1)\sigma_A \sigma_B}$$

where n is the number of tuples, \overline{A} and \overline{B} are the respective means of A and B, $\sigma_{\!\scriptscriptstyle A}$ and $\sigma_{\!\scriptscriptstyle B}$ are the respective standard deviation of A and B, and $\Sigma(a_ib_i)$ is the sum of the AB crossproduct.

- If $r_{A,B} > 0$, A and B are positively correlated (A's values increase as B's). The higher, the stronger correlation.
- r_{A,B} = 0: independent; r_{A,B} < 0: negatively correlated Rhodes College COMP 46: Data Mining Spring 2015

Covariance (Numeric Data)

· Covariance is similar to correlation

Covariance is similar to correlation
$$Cov(A,B) = E((A-\bar{A})(B-\bar{B})) = \frac{\sum_{i=1}^n (a_i - \bar{A})(b_i - \bar{B})}{n}$$

$$r_{A,B} = \frac{Cov(A,B)}{-\sigma_A\sigma_B}$$

where n is the number of tuples, \overline{A} and \overline{B} are the respective mean or **expected values** of A and B, σ_A and σ_B are the respective standard deviation

- Positive covariance: If $Cov_{A,B} > 0$, then A and B both tend to be larger than their expected values
- Negative covariance: If $Cov_{A,B} < 0$ then if A is larger than its expected value, B is likely to be smaller than its expected value
- Independence: $Cov_{A,B} = 0$ but the converse is not true:
 - Some pairs of random variables may have a covariance of 0 but are not independent. Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence

Covariance: An Example

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

• It can be simplified in computation as

$$Cov(A, B) = E(A \cdot B) - \bar{A}\bar{B}$$

- Suppose two stocks A and B have the following values in one week:
 (2, 5), (3, 8), (5, 10), (4, 11), (6, 14).
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
 - E(A) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4
 - E(B) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6
 - $Cov(A,B) = (2\times5+3\times8+5\times10+4\times11+6\times14)/5 4\times9.6 = 4$
- Thus, A and B rise together since Cov(A, B) > 0.

Next Time

- More Data Preprocessing & Data Warehousing
- Finish reading Ch. 3, start Ch. 4

1/15/2015

COMP 465: Data Mining Spring 2015