

Similarity and Dissimilarity

- Similarity
- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range $[0,1]$
- Dissimilarity (e.g., distance)
- Numerical measure of how different two data objects are
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- Proximity refers to a similarity or dissimilarity

1/15/2015
COMP 465: Data Mining
Spring 2015

Proximity Measure for Nominal Attributes

- Data matrix
- n data points with p dimensions
- Two modes

$$
\left[\begin{array}{ccccc}
x_{11} & \ldots & x_{1 f} & \ldots & x_{1 p} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_{i 1} & \ldots & x_{i f} & \ldots & x_{i p} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_{n 1} & \ldots & x_{n f} & \ldots & x_{n p}
\end{array}\right]
$$

- Dissimilarity matrix
- n data points, but registers only the distance
- A triangular matrix
- Single mode
$\left[\begin{array}{ccccc}0 & & & & \\ d(2,1) & 0 & & & \\ d(\mathbf{3 , 1}) & d(\mathbf{3 , 2}) & 0 & & \\ : & : & : & & \\ d(n, 1) & d(n, 2) & \ldots & \ldots & 0\end{array}\right]$
- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
- m: \# of matches, p : total \# of variables

$$
d(i, j)=\frac{p-m}{p}
$$

- Method 2: Use a large number of binary attributes
- creating a new binary attribute for each of the M nominal states
${ }_{1 / 15 / 2015} \quad$ Rhodes College

1/15/2015

Distance on Numeric Data: Minkowski Distance

- Minkowski distance: A popular distance measure

$$
d(i, j)=\sqrt[h]{\left|x_{i 1}-x_{j 1}\right| h+\left|x_{i 2}-x_{j 2}\right|^{h}+\cdots+\left|x_{i p}-x_{j p}\right|}
$$

where $i=\left(x_{\mathrm{i} 1}, x_{\mathrm{i} 2}, \ldots, x_{\mathrm{ip}}\right)$ and $j=\left(x_{\mathrm{j} 1}, x_{\mathrm{i} 2}, \ldots, x_{\mathrm{jp}}\right)$ are two p dimensional data objects, and h is the order (the distance so defined is also called L-h norm)

- Properties
$-\mathrm{d}(\mathrm{i}, \mathrm{j})>0$ if $\mathrm{i} \neq \mathrm{j}$, and $\mathrm{d}(\mathrm{i}, \mathrm{i})=0$ (Positive definiteness)
$-d(i, j)=d(j, i) \quad$ Symmetry)
$-\mathrm{d}(\mathrm{i}, \mathrm{j}) \leq \mathrm{d}(\mathrm{i}, \mathrm{k})+\mathrm{d}(\mathrm{k}, \mathrm{j})$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

1/15/2015
comp 465: Data Mining
Spring 2015
Spring 2015

Example: Minkowski Distance

Dissimilarity Matrices

Manhattan (L_{1})

\mathbf{L}	$\mathbf{x} \mathbf{1}$	$\mathbf{x} \mathbf{2}$	$\mathbf{x} \mathbf{3}$	$\mathbf{x} 4$
$\mathbf{x} \mathbf{2}$	0			
$\mathbf{x} \mathbf{2}$	5	0		
$\mathbf{x} 3$	3	6	0	
$\mathbf{x} 4$	6	1	7	0

Euclidean (L_{2})

$\mathbf{L} \mathbf{2}$	$\mathbf{x} \mathbf{1}$	$\mathbf{x} \mathbf{2}$	$\mathbf{x} \mathbf{3}$	$\mathbf{x 4}$
$\mathbf{x} \mathbf{1}$	0			
$\mathbf{x} \mathbf{2}$	3.61	0		
$\mathbf{x} 3$	2.24	5.1	0.	
$\mathbf{x} \mathbf{4}$	4.24	1	5.39	0

Supremum

\mathbf{L}_{∞}	$\mathbf{x} 1$	$\mathbf{x} \mathbf{2}$	$\mathbf{x} 3$	$\mathbf{x} 4$
$\mathbf{x} 1$	0			
$\mathbf{x} \mathbf{2}$	3	0		
$\mathbf{x} 3$	2	5		0
$\mathbf{x} 4$		3	1	

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
- replace $x_{i f}$ by their rank $\quad r_{i f} \in\left\{1, \ldots, M_{f}\right\}$
- map the range of each variable onto $[0,1]$ by replacing i-th object in the f-th variable by

$$
z_{i f}=\frac{r_{i f}-1}{M_{f}-1}
$$

- compute the dissimilarity using methods for interval-scaled variables

1/15/2015
COMP 465: Data Mining
Spring 2015

Attributes of Mixed Type

- A database may contain all attribute types
- Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$
d(i, j)=\frac{\sum_{f=1}^{p} \delta_{i j}^{(f)} d_{i j}^{(f)}}{\sum_{f=1}^{p} \delta_{i j}^{(f)}}
$$

$-f$ is binary or nominal:
$\mathrm{d}_{\mathrm{ij}}^{(\mathrm{f})}=0$ if $\mathrm{x}_{\mathrm{if}}=\mathrm{x}_{\mathrm{jf}}$, or $\mathrm{d}_{\mathrm{ij}}{ }^{(\mathrm{f})}=1$ otherwise
$-f$ is numeric: use the normalized distance
$-f$ is ordinal

- Compute ranks r_{if} and
- Treat z_{if} as interval-scaled

$$
z_{i f}=\frac{r_{i f}-1}{M_{f}-1}
$$

Cosine Similarity

- A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.
Document teamcoach hockey baseball soccer penalty score win loss season

Document	team coach	hockey	baseball	soccer	penalty	score	win	loss	season	
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ..
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_{1} and d_{2} are two vectors (e.g., term-frequency vectors), then
$\cos \left(d_{1}, d_{2}\right)=\left(d_{1} \bullet d_{2}\right) /\left|\left|d_{1}\right|\right|| | d_{2}| |$,
where • indicates vector dot product, $||d||$: the length of vector d

1/15/2015
COMP 465: Data Mining
Spring 2015

Example: Cosine Similarity

- $\cos \left(d_{1}, d_{2}\right)=\left(d_{1} \bullet d_{2}\right) /\left\|d_{1}\right\|\left\|d_{2}\right\|$,
where • indicates vector dot product, $||d|:$ the length of vector d
- Ex: Find the similarity between documents 1 and 2 .
$d_{1}=(5,0,3,0,2,0,0,2,0,0)$
$d_{2}=(3,0,2,0,1,1,0,1,0,1)$
$d_{1} \cdot d_{2}=5^{*} 3+0 * 0+3^{*} 2+0 * 0+2 * 1+0^{*} 1+0^{*} 1+2 * 1+0^{*} 0+0 * 1=25$
$\left|\left|d_{1}\right|\right|=(5 * 5+0 * 0+3 * 3+0 * 0+2 * 2+0 * 0+0 * 0+2 * 2+0 * 0+0 * 0)^{0.5}=(42)^{0.5}=6.481$ $\left|\left|d_{2}\right|\right|=(3 * 3+0 * 0+2 * 2+0 * 0+1 * 1+1 * 1+0 * 0+1 * 1+0 * 0+1 * 1)^{0.5}=(17)^{0.5}=4.12$ $\cos \left(d_{1}, d_{2}\right)=0.94$

Summary

- Data attribute types: nominal, binary, ordinal, interval-scaled, ratioscaled
- Many types of data sets, e.g., numerical, text, graph, Web, image.
- Gain insight into the data by:
- Basic statistical data description: central tendency, dispersion, graphical displays
- Data visualization: map data onto graphical primitives
- Measure data similarity
- Above steps are the beginning of data preprocessing
- Many methods have been developed but still an active area of research

Data Quality: Why Preprocess the Data?

- Measures for data quality: A multidimensional view
- Accuracy: correct or wrong, accurate or not
- Completeness: not recorded, unavailable, ...
- Consistency: some modified but some not, dangling, ...
- Timeliness: timely update?
- Believability: how trustable the data are correct?
- Interpretability: how easily the data can be understood?

Data Cleaning

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
- incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
- e.g., Occupation = " " (missing data)
- noisy: containing noise, errors, or outliers
- e.g., Salary = "-10" (an error)
- inconsistent: containing discrepancies in codes or names, e.g.,
- Age = "42", Birthday = "03/07/2010"
- Was rating " $1,2,3$ ", now rating " A, B, C "
- discrepancy between duplicate records - Intentional (e.g., disguised missing data)
- Jan. 1 as everyone's birthday?

Incomplete (Missing) Data

- Data is not always available
- E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
- equipment malfunction
- inconsistent with other recorded data and thus deleted
- data not entered due to misunderstanding
- certain data may not be considered important at the time of entry
- not register history or changes of the data
- Missing data may need to be inferred

1/15/2015
COMP 465: Data Mining Spring 2015

Noisy Data

- Noise: random error or variance in a measured variable
- Incorrect attribute values may be due to
- faulty data collection instruments
- data entry problems
- data transmission problems
- technology limitation
- inconsistency in naming convention
- Other data problems which require data cleaning
- duplicate records
- incomplete data
- inconsistent data

1/15/2015

How to Handle Noisy Data?

- Binning
- first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
- smooth by fitting the data into regression functions
- Clustering
- detect and remove outliers
- Combined computer and human inspection
- detect suspicious values and check by human (e.g., deal with possible outliers)

Data Cleaning as a Process

- Data discrepancy detection
- Use metadata (e.g., domain, range, dependency, distribution)
- Check field overloading
- Check uniqueness rule, consecutive rule and null rule
- Use commercial tools
- Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
- Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)
- Data migration and integration
- Data migration tools: allow transformations to be specified
- ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface
- Integration of the two processes
- Iterative and interactive
/15/2015
COMP 465: Data Mining Spring 2015

Data Integration

- Data integration
- Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id \equiv B.cust-\#
- Integrate metadata from different sources
- Entity identification problem:
- Identify real world entities from multiple data sources, e.g., Bill Clinton= William Clinton
- Detecting and resolving data value conflicts
- For the same real world entity, attribute values from different sources are different
- Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when you integrate multiple databases
- Object identification: The same attribute or object may have different names in different databases
- Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by correlation analysis and covariance analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Spring 2015

Correlation Analysis (Nominal Data)

- X^{2} (chi-square) test

$$
\chi^{2}=\sum \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}
$$

- The larger the X^{2} value, the more likely the variables are related
- The cells that contribute the most to the X^{2} value are those whose actual count is very different from the expected count
- Correlation does not imply causality
- \# of hospitals and \# of car-theft in a city are correlated
- Both are causally linked to the third variable: population

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	$250(90)$	$200(360)$	450
Not like science fiction	$50(210)$	$1000(840)$	1050
Sum(col.)	300	1200	1500

- X^{2} (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$
\chi^{2}=\frac{(250-90)^{2}}{90}+\frac{(50-210)^{2}}{210}+\frac{(200-360)^{2}}{360}+\frac{(1000-840)^{2}}{840}=507.93
$$

- It shows that like_science_fiction and play_chess are correlated in the group
$\underset{\substack{\text { COMP 465: Data Mining } \\ \text { Spring } 2015}}{ }$
Spring 2015

Correlation Analysis (Numeric Data)

- Correlation coefficient (also called Pearson's product moment coefficient)

$$
r_{A, B}=\frac{\sum_{i=1}^{n}\left(a_{i}-\bar{A}\right)\left(b_{i}-\bar{B}\right)}{(n-1) \sigma_{A} \sigma_{B}}=\frac{\sum_{i=1}^{n}\left(a_{i} b_{i}\right)-n \bar{A} \bar{B}}{(n-1) \sigma_{A} \sigma_{B}}
$$

where n is the number of tuples, \bar{A} and \bar{B} are the respective means of A and B, σ_{A} and σ_{B} are the respective standard deviation of A and B, and $\Sigma\left(a_{i} b_{i}\right)$ is the sum of the $A B$ crossproduct.

- If $r_{A, B}>0, A$ and B are positively correlated (A 's values increase as B ' s). The higher, the stronger correlation.
- $\mathrm{r}_{\mathrm{A}, \mathrm{B}}=0$: independent; $\mathrm{r}_{\mathrm{AB}}<0$: negatively correlated Rhodes College 1/15/2015 | Compring 2015 |
| :---: |
| Splen |

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1 .

Covariance (Numeric Data)

- Covariance is similar to correlation
$\operatorname{Cov}(A, B)=E((A-\bar{A})(B-\bar{B}))=\frac{\sum_{i=1}^{n}\left(a_{i}-\bar{A}\right)\left(b_{i}-\bar{B}\right)}{n}$

$$
r_{A, B}=\frac{\operatorname{Cov}(A, B)}{\sigma_{A} \sigma_{B}}
$$

where n is the number of tuples, A and \bar{B} are the respective mean or expected values of A and B, σ_{A} and σ_{B} are the respective standard deviation of A and B

- Positive covariance: If $\operatorname{Cov}_{\mathrm{A}, \mathrm{B}}>0$, then A and B both tend to be larger than their expected values
- Negative covariance: If $\operatorname{Cov}_{A, B}<0$ then if A is larger than its expected value, B is likely to be smaller than its expected value
- Independence: $\operatorname{Cov}_{A, B}=0$ but the converse is not true:
- Some pairs of random variables may have a covariance of 0 but are not independent. Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence
1/15/2015
comp 465: Data Mining
Spring 2015

Covariance: An Example

$$
\operatorname{Cov}(A, B)=E((A-\bar{A})(B-\bar{B}))=\frac{\sum_{i=1}^{n}\left(a_{i}-\bar{A}\right)\left(b_{i}-\bar{B}\right)}{n}
$$

- It can be simplified in computation as

$$
\operatorname{Cov}(A, B)=E(A \cdot B)-\bar{A} \bar{B}
$$

- Suppose two stocks A and B have the following values in one week: $(2,5),(3,8),(5,10),(4,11),(6,14)$.
- Question: If the stocks are affected by the same industry trends, will their
prices rise or fall together?
$-E(A)=(2+3+5+4+6) / 5=20 / 5=4$
$-E(B)=(5+8+10+11+14) / 5=48 / 5=9.6$
$-\operatorname{Cov}(A, B)=(2 \times 5+3 \times 8+5 \times 10+4 \times 11+6 \times 14) / 5-4 \times 9.6=4$
- Thus, A and B rise together since $\operatorname{Cov}(A, B)>0$.

Thus, A and Bise

Next Time
 - More Data Preprocessing \& Data Warehousing Pr

 Pr}- Finish reading Ch. 3, start Ch. 4
-

