

COMP 465

Data Mining

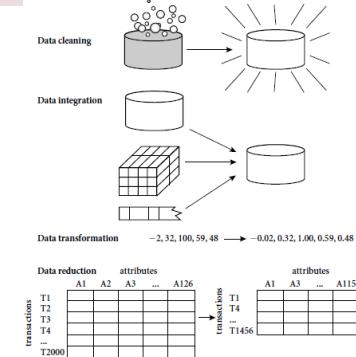
Data Preprocessing

Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei
Data Mining: Concepts and Techniques, 3rd ed.

COMP 465: Data Mining
Spring 2015

1

Major Tasks in Data Preprocessing



1/15/2015

2

Data Reduction Strategies

- Data reduction:** Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? — A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.
- Data reduction strategies
 - Dimensionality reduction**, e.g., remove unimportant attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Numerosity reduction** (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
 - Data compression**

COMP 465: Data Mining Spring 2015

3

Data Reduction 1: Dimensionality Reduction

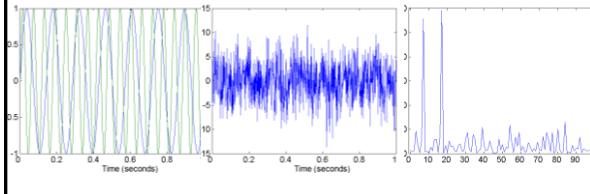
- Curse of dimensionality**
 - When dimensionality increases, data becomes increasingly sparse
 - Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
 - The possible combinations of subspaces will grow exponentially
- Dimensionality reduction**
 - Avoid the curse of dimensionality
 - Help eliminate irrelevant features and reduce noise
 - Reduce time and space required in data mining
 - Allow easier visualization
- Dimensionality reduction techniques**
 - Wavelet transforms
 - Principal Component Analysis
 - Supervised and nonlinear techniques (e.g., feature selection)

COMP 465: Data Mining Spring 2015

4

Mapping Data to a New Space

- Fourier transform
- Wavelet transform



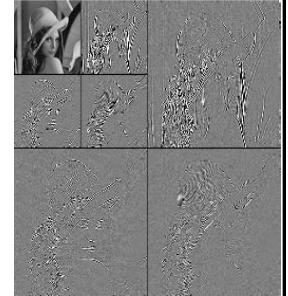
1/27/2015

COMP 465: Data Mining Spring 2015

5

What Is Wavelet Transform?

- Decomposes a signal into different frequency subbands
 - Applicable to n-dimensional signals
- Data are transformed to preserve relative distance between objects at different levels of resolution
- Allow natural clusters to become more distinguishable
- Used for image compression

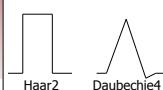


1/27/2015

COMP 465: Data Mining Spring 2015

6

Wavelet Transformation



- Discrete wavelet transform (DWT) for linear signal processing, multi-resolution analysis
- Compressed approximation: store only a small fraction of the strongest of the wavelet coefficients
- Similar to discrete Fourier transform (DFT), but better lossy compression, localized in space
- Method:
 - Length, L , must be an integer power of 2 (padding with 0's, when necessary)
 - Each transform has 2 functions: smoothing, difference
 - Applies to pairs of data, resulting in two set of data of length $L/2$
 - Applies two functions recursively, until reaches the desired length

1/27/2015

COMP 465: Data Mining Spring 2015

7

Wavelet Decomposition

- Wavelets: A math tool for space-efficient hierarchical decomposition of functions
- $S = [2, 2, 0, 2, 3, 5, 4, 4]$ can be transformed to $S_\lambda = [2^{3/4}, -1^{1/4}, 1^{1/2}, 0, 0, -1, -1, 0]$
- Compression: many small detail coefficients can be replaced by 0's, and only the significant coefficients are retained

Resolution	Averages	Detail Coefficients
8	$[2, 2, 0, 2, 3, 5, 4, 4]$	
4	$[2, 1, 4, 4]$	$[0, -1, -1, 0]$
2	$[1\frac{1}{2}, 4]$	$[\frac{1}{2}, 0]$
1	$[2\frac{3}{4}]$	$[-1\frac{1}{4}]$

1/27/2015

COMP 465: Data Mining Spring 2015

8

Why Wavelet Transform?

- Use hat-shape filters
 - Emphasize region where points cluster
 - Suppress weaker information in their boundaries
- Effective removal of outliers
 - Insensitive to noise, insensitive to input order
- Multi-resolution
 - Detect arbitrary shaped clusters at different scales
- Efficient
 - Complexity $O(N)$
- Only applicable to low dimensional data

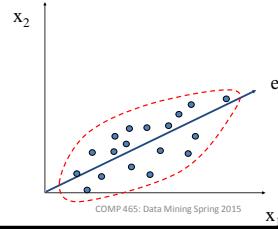
1/27/2015

COMP 465: Data Mining Spring 2015

9

Principal Component Analysis (PCA)

- Find a projection that captures the largest amount of variation in data
- The original data are projected onto a much smaller space, resulting in dimensionality reduction. We find the eigenvectors of the covariance matrix, and these eigenvectors define the new space



1/27/2015

COMP 465: Data Mining Spring 2015

10

Principal Component Analysis (Steps)

- Given N data vectors from n -dimensions, find $k \leq n$ orthogonal vectors (*principal components*) that can be best used to represent data
 - Normalize input data: Each attribute falls within the same range
 - Compute k orthonormal (unit) vectors, i.e., *principal components*
 - Each input data (vector) is a linear combination of the k principal component vectors
 - The principal components are sorted in order of decreasing "significance" or strength
 - Since the components are sorted, the size of the data can be reduced by eliminating the *weak components*, i.e., those with low variance (i.e., using the strongest principal components, it is possible to reconstruct a good approximation of the original data)
- Works for numeric data only

1/27/2015

COMP 465: Data Mining Spring 2015

11

Attribute Subset Selection

- Another way to reduce dimensionality of data
- Redundant attributes
 - Duplicate much or all of the information contained in one or more other attributes
 - E.g., purchase price of a product and the amount of sales tax paid
- Irrelevant attributes
 - Contain no information that is useful for the data mining task at hand
 - E.g., students' ID is often irrelevant to the task of predicting students' GPA

12

Heuristic Search in Attribute Selection

- There are 2^d possible attribute combinations of d attributes
- Typical heuristic attribute selection methods:
 - Best single attribute under the attribute independence assumption: choose by significance tests
 - Best step-wise feature selection:
 - The best single-attribute is picked first
 - Then next best attribute condition to the first, ...
 - Step-wise attribute elimination:
 - Repeatedly eliminate the worst attribute
 - Best combined attribute selection and elimination
 - Optimal branch and bound:
 - Use attribute elimination and backtracking

1/27/2015

COMP 465: Data Mining Spring 2015

13

Attribute Creation (Feature Generation)

- Create new attributes (features) that can capture the important information in a data set more effectively than the original ones
- Three general methodologies
 - Attribute extraction
 - Domain-specific
 - Mapping data to new space (see: data reduction)
 - E.g., Fourier transformation, wavelet transformation, manifold approaches (not covered)
 - Attribute construction
 - Combining features (see: discriminative frequent patterns in Chapter on "Advanced Classification")
 - Data discretization

Rhodes College

14

1/27/2015

COMP 465: Data Mining Spring 2015

Data Reduction 2: Numerosity Reduction

- Reduce data volume by choosing alternative, *smaller* forms of data representation
- **Parametric methods** (e.g., regression)
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
 - Ex.: Log-linear models—obtain value at a point in m -D space as the product on appropriate marginal subspaces
- **Non-parametric** methods
 - Do not assume models
 - Major families: histograms, clustering, sampling, ...

1/27/2015

COMP 465: Data Mining Spring 2015

15

Parametric Data Reduction: Regression and Log-Linear Models

- **Linear regression**
 - Data modeled to fit a straight line
 - Often uses the least-square method to fit the line
- **Multiple regression**
 - Allows a response variable Y to be modeled as a linear function of multidimensional feature vector
- **Log-linear model**
 - Approximates discrete multidimensional probability distributions

Rhodes College

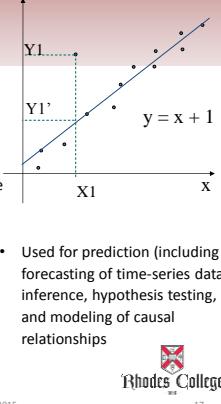
16

1/27/2015

COMP 465: Data Mining Spring 2015

Regression Analysis

- Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a **dependent variable** (also called **response variable** or **measurement**) and of one or more **independent variables** (aka. **explanatory variables** or **predictors**)
- The parameters are estimated so as to give a "best fit" of the data
- Most commonly the best fit is evaluated by using the **least squares method**, but other criteria have also been used
- Used for prediction (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships



1/27/2015

COMP 465: Data Mining Spring 2015

17

Regress Analysis and Log-Linear Models

- Linear regression:** $Y = w X + b$
 - Two regression coefficients, w and b , specify the line and are to be estimated by using the data at hand
 - Using the least squares criterion to the known values of $Y_1, Y_2, \dots, Y_N, X_1, X_2, \dots$
- Multiple regression:** $Y = b_0 + b_1 X_1 + b_2 X_2$
 - Many nonlinear functions can be transformed into the above
- Log-linear models:**
 - Approximate discrete multidimensional probability distributions
 - Estimate the probability of each point (tuple) in a multi-dimensional space for a set of discretized attributes, based on a smaller subset of dimensional combinations
 - Useful for dimensionality reduction and data smoothing

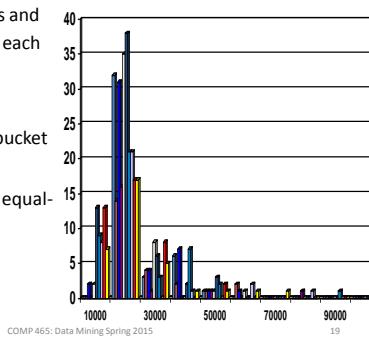
1/27/2015

COMP 465: Data Mining Spring 2015

18

Histogram Analysis

- Divide data into buckets and store average (sum) for each bucket
- Partitioning rules:
 - Equal-width: equal bucket range
 - Equal-frequency (or equal-depth)



1/27/2015

COMP 465: Data Mining Spring 2015

19

Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- Can have hierarchical clustering and be stored in multi-dimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms
- Cluster analysis will be studied in depth in Chapters 10 & 11

1/27/2015

COMP 465: Data Mining Spring 2015

20

Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- Key principle: Choose a **representative** subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling:
- Note: Sampling may not reduce database I/Os (page at a time)

1/27/2015

COMP 465: Data Mining Spring 2015

21

Types of Sampling

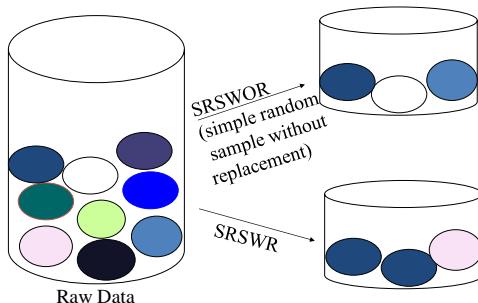
- Simple random sampling**
 - There is an equal probability of selecting any particular item
- Sampling without replacement**
 - Once an object is selected, it is removed from the population
- Sampling with replacement**
 - A selected object is not removed from the population
- Stratified sampling:**
 - Partition the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)
 - Used in conjunction with skewed data

1/27/2015

COMP 465: Data Mining Spring 2015

22

Sampling: With or without Replacement



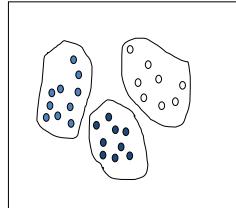
1/27/2015

COMP 465: Data Mining Spring 2015

23

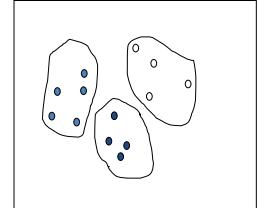
Sampling: Cluster or Stratified Sampling

Raw Data



1/27/2015

Cluster/Stratified Sample



COMP 465: Data Mining Spring 2015

24

Data Cube Aggregation

- The lowest level of a data cube (base cuboid)
 - The aggregated data for an **individual entity of interest**
 - E.g., a customer in a phone calling data warehouse
- Multiple levels of aggregation in data cubes
 - Further reduce the size of data to deal with
- Reference appropriate levels
 - Use the smallest representation which is enough to solve the task
- Queries regarding aggregated information should be answered using data cube, when possible

1/27/2015

COMP 465: Data Mining Spring 2015

25

Data Reduction 3: Data Compression

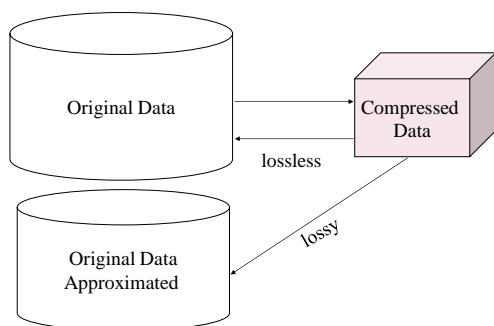
- String compression
 - There are extensive theories and well-tuned algorithms
 - Typically lossless, but only limited manipulation is possible without expansion
- Audio/video compression
 - Typically lossy compression, with progressive refinement
 - Sometimes small fragments of signal can be reconstructed without reconstructing the whole
- Time sequence is not audio
 - Typically short and vary slowly with time
- Dimensionality and numerosity reduction may also be considered as forms of data compression

1/27/2015

COMP 465: Data Mining Spring 2015

26

Data Compression



1/27/2015

COMP 465: Data Mining Spring 2015

27

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values
- Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - Aggregation: Summarization, data cube construction
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Discretization: Concept hierarchy climbing

1/27/2015

COMP 465: Data Mining Spring 2015

28

Normalization

- Min-max normalization: to $[new_min_A, new_max_A]$

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0].
Then \$73,000 is mapped to $\frac{73,600 - 12,000}{98,000 - 12,000} (1.0 - 0) + 0 = 0.716$

- Z-score normalization (μ : mean, σ : standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- Ex. Let $\mu = 54,000$, $\sigma = 16,000$. Then $\frac{73,600 - 54,000}{16,000} = 1.225$

- Normalization by decimal scaling

$$v' = \frac{v}{10^j} \quad \text{Where } j \text{ is the smallest integer such that } \text{Max}(v') < 1$$

1/27/2015

COMP 465: Data Mining Spring 2015

29

Discretization

- Three types of attributes

- Nominal—values from an unordered set, e.g., color, profession
- Ordinal—values from an ordered set, e.g., military or academic rank
- Numeric—real numbers, e.g., integer or real numbers

- Discretization: Divide the range of a continuous attribute into intervals

- Interval labels can then be used to replace actual data values
- Reduce data size by discretization
- Supervised vs. unsupervised
- Split (top-down) vs. merge (bottom-up)
- Discretization can be performed recursively on an attribute
- Prepare for further analysis, e.g., classification

1/27/2015

COMP 465: Data Mining Spring 2015

30

Data Discretization Methods

- Typical methods: All the methods can be applied recursively
 - Binning
 - Top-down split, unsupervised
 - Histogram analysis
 - Top-down split, unsupervised
 - Clustering analysis (unsupervised, top-down split or bottom-up merge)
 - Decision-tree analysis (supervised, top-down split)
 - Correlation (e.g., χ^2) analysis (unsupervised, bottom-up merge)

1/27/2015

COMP 465: Data Mining Spring 2015

31

Simple Discretization: Binning

- Equal-width (distance) partitioning

- Divides the range into N intervals of equal size: uniform grid
- if A and B are the lowest and highest values of the attribute, the width of intervals will be: $W = (B - A)/N$.
- The most straightforward, but outliers may dominate presentation
- Skewed data is not handled well

- Equal-depth (frequency) partitioning

- Divides the range into N intervals, each containing approximately same number of samples
- Good data scaling
- Managing categorical attributes can be tricky

1/27/2015

COMP 465: Data Mining Spring 2015

32

Binning Methods for Data Smoothing

Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

* Partition into equal-frequency (**equi-depth**) bins:

- Bin 1: 4, 8, 9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34

* Smoothing by **bin means**:

- Bin 1: 9, 9, 9, 9
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29

* Smoothing by **bin boundaries**:

- Bin 1: 4, 4, 4, 15
- Bin 2: 21, 21, 25, 25
- Bin 3: 26, 26, 26, 34

1/27/2015

COMP 465: Data Mining Spring 2015

33

Discretization by Classification & Correlation Analysis

- Classification (e.g., decision tree analysis)
 - Supervised: Given class labels, e.g., cancerous vs. benign
 - Using *entropy* to determine split point (discretization point)
 - Top-down, recursive split
 - Details to be covered in Chapter “Classification”
- Correlation analysis (e.g., Chi-merge: χ^2 -based discretization)
 - Supervised: use class information
 - Bottom-up merge: find the best neighboring intervals (those having similar distributions of classes, i.e., low χ^2 values) to merge
 - Merge performed recursively, until a predefined stopping condition

1/27/2015

COMP 465: Data Mining Spring 2015

35

Concept Hierarchy Generation

- **Concept hierarchy** organizes concepts (i.e., attribute values) hierarchically and is usually associated with each dimension in a data warehouse
- Concept hierarchies facilitate drilling and rolling in data warehouses to view data in multiple granularity
- Concept hierarchy formation: Recursively reduce the data by collecting and replacing low level concepts (such as numeric values for *age*) by higher level concepts (such as *youth*, *adult*, or *senior*)
- Concept hierarchies can be explicitly specified by domain experts and/or data warehouse designers
- Concept hierarchy can be automatically formed for both numeric and nominal data—For numeric data, use discretization methods shown

1/27/2015

COMP 465: Data Mining Spring 2015

36

Concept Hierarchy Generation for Nominal Data

- Specification of a partial/total ordering of attributes explicitly at the schema level by users or experts
 - *street* < *city* < *state* < *country*
- Specification of a hierarchy for a set of values by explicit data grouping
 - {Urbana, Champaign, Chicago} < Illinois
- Specification of only a partial set of attributes
 - E.g., only *street* < *city*, not others
- Automatic generation of hierarchies (or attribute levels) by the analysis of the number of distinct values
 - E.g., for a set of attributes: {*street*, *city*, *state*, *country*}

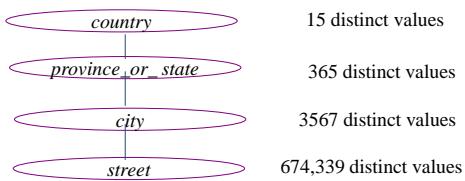
1/27/2015

COMP 465: Data Mining Spring 2015

37

Automatic Concept Hierarchy Generation

- Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy
 - Exceptions, e.g., weekday, month, quarter, year



1/27/2015

38

Summary

- Data quality:** accuracy, completeness, consistency, timeliness, believability, interpretability
- Data cleaning:** e.g. missing/noisy values, outliers
- Data integration** from multiple sources:
 - Entity identification problem; Remove redundancies; Detect inconsistencies
- Data reduction**
 - Dimensionality reduction; Numerosity reduction; Data compression
- Data transformation and data discretization**
 - Normalization; Concept hierarchy generation

1/27/2015

COMP 465: Data Mining Spring 2015

39