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Abstract

The problem of merging multiple databases of information about common entities is

frequently encountered in KDD and decision support applications in large commercial

and government organizations. The problem we study is often called the Merge/Purge

problem and is di�cult to solve both in scale and accuracy. Large repositories of

data typically have numerous duplicate information entries about the same entities

that are di�cult to cull together without an intelligent \equational theory" that iden-

ti�es equivalent items by a complex, domain-dependent matching process. We have

developed a system for accomplishing this Data Cleansing task and demonstrate its

use for cleansing lists of names of potential customers in a direct marketing-type ap-

plication. Our results for statistically generated data are shown to be accurate and

e�ective when processing the data multiple times using di�erent keys for sorting on

each successive pass. Combing results of individual passes using transitive closure over

the independent results, produces far more accurate results at lower cost. The system

provides a rule programming module that is easy to program and quite good at �nding

duplicates especially in an environment with massive amounts of data. This paper

details improvements in our system, and reports on the successful implementation for

a \real-world" database that conclusively validates our results previously achieved for

statistically generated data.

Keywords: data cleaning, data cleansing, duplicate elimination, semantic inte-

gration

�

This work has been supported in part by the New York State Science and Technology Foundation through

the Center for Advanced Technology in Telecommunications at Polytechnic University, by NSF under grant

IRI-94-13847, and by Citicorp.

y

This author is now at the University of Illinois at Spring�ed. Work at ColumbiaUniversity was supported

by an AT&T Cooperative Research Program Fellowship.

0



1 Introduction

Merging large databases acquired from di�erent sources with heterogeneous representations

of information has become an increasingly important and di�cult problem for many or-

ganizations. Instances of this problem appearing in the literature have been called record

linkage [12], the semantic integration problem [1] or the instance identi�cation problem [23],

and more recently the data cleansing problem regarded as a crucial �rst step in a KDD/DM

process [11]. Business organizations call this problem the merge/purge problem.

In this paper we consider the data cleansing of very large databases of information that

need to be processed as quickly, e�ciently, and accurately as possible. For instance, one

month is a typical business cycle in certain direct marketing operations. This means that

sources of data need to be identi�ed, acquired, conditioned, and then correlated or merged

within a small portion of a month in order to prepare mailings and response analyses. It

is not uncommon for large businesses to acquire scores of databases each month, with a

total size of hundreds of millions to over a billion records, that need to be analyzed within

a few days. In a more general setting, data mining applications depend upon a conditioned

sample of data that is correlated with multiple sources of information and hence accurate

database merging operations are highly desirable. Within any single data set the problem is

also crucial for accurate statistical analyses. Without accurate identi�cation of duplicated

information, frequency distributions and various other aggregations will produce false or

misleading statistics leading to perhaps untrustworthy new knowledge.

Large organizations have grappled with this problem for many years when dealing with

lists of names and addresses and other identifying information. Credit card companies, for

example, need to assess the �nancial risk of potential new customers who may purposely

hide their true identities (and thus their history) or manufacture new ones. The Justice

Department and other law enforcement agencies seek to discover crucial links in complex webs

of �nancial transactions to uncover sophisticated money laundering activities [22]. Errors

due to data entry mistakes, faulty sensor readings or more malicious activities, provide scores

of erroneous datasets that propagate errors in each successive generation of data.

The problem of merging two or more databases has been tackled in a straightforward
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fashion by a simple sort of the concatenated data sets followed by a duplicate elimination

phase over the sorted list [4]. However, when the databases involved are heterogeneous,

meaning they do not share the same schema, or that the same real-world entities are repre-

sented di�erently in the datasets, the problem of merging becomes more di�cult. The �rst

issue, where databases have di�erent schema, has been addressed extensively in the litera-

ture and is known as the schema integration problem [3]. We are primarily interested in the

second problem: heterogeneous representations of data and its implication when merging or

joining multiple datasets.

The fundamental problem in merge/purge is that the data supplied by various sources

typically include identi�ers or string data, that are either di�erent among di�erent datasets

or simply erroneous due to a variety of reasons (including typographical or transcription

errors, or purposeful fraudulent activity (aliases) in the case of names). Hence, the equality

of two values over the domain of the common join attribute is not speci�ed as a simple

arithmetic predicate, but rather by a set of equational axioms that de�ne equivalence, i.e., by

an equational theory. Determining that two records from two databases provide information

about the same entity can be highly complex. We use a rule-based knowledge base to

implement an equational theory.

The problem of identifying similar instances of the same real-world entity by means of

an inexact match has been studied by the Fuzzy Database[5] community. Much of the work

has concentrated on the problem of executing a query Q over a fuzzy relational database.

The answer for Q is the set of all tuples satisfying Q in a non-fuzzy relational database and

all tuples that satisfy Q within a threshold value. Fuzzy relational databases can explicitly

store possibility distributions for each value in a tuple, or use possibility-based relations to

determine how strongly records belong to the fuzzy set de�ned by a query [14]. The problem

we study in this paper is closely related to the problem studied by the fuzzy database

community. However, while fuzzy querying systems are concerned with the accurate and

e�cient fuzzy retrieval of tuples given a query Q, we are concerned with the pre-processing

of the entire data set before it is even ready for querying. The process we study is o�-line

and involves clustering all tuples into equivalence classes. This clustering is guided by the

equational theory which can include fuzzy matching techniques.
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Since we are dealing with large databases, we seek to reduce the complexity of the problem

by partitioning the database into partitions or clusters in such a way that the potentially

matching records are assigned to the same cluster. (Here we use the term cluster in line

with the common terminology of statistical pattern recognition.) In this paper we discuss

solutions to merge/purge in which sorting of the entire data-set is used to bring the matching

records close together in a bounded neighborhood in a linear list, as well as an optimization of

this basic technique that seeks to eliminate records during sorting with exact duplicate keys.

Elsewhere we have treated the case of clustering in which sorting is replaced by a single-scan

process[16]. This clustering resembles the hierarchical clustering strategy proposed in [6] to

e�ciently perform queries over large fuzzy relational databases. However, we demonstrate

that, as one may expect, none of these basic approaches alone can guarantee high accuracy.

Here, accuracy means how many of the actual duplicates appearing in the data have been

matched and merged correctly.

This paper is organized as follows. In section 2 we detail a system we have implemented

that performs a generic Merge/Purge process that includes a declarative rule language for

specifying an equational theory making it easier to experiment and modify the criteria for

equivalence. (This is a very important desideratum of commercial organizations that work

under strict time constraints and thus have precious little time to experiment with alternative

matching criteria.) Then in section 3 we demonstrate that no single pass over the data using

one particular scheme as a sorting key performs as well as computing the transitive closure

over several independent runs each using a di�erent sorting key for ordering data. The moral

is simply that several distinct \cheap" passes over the data produce more accurate results

than one \expensive" pass over the data. This result was veri�ed independently by Monge

and Elkan [19] who recently studied the same problem using a domain-independent matching

algorithm as an equational theory.

In section 4 we provide a detailed treatment of a real-world data set, provided by the

Child Welfare Department of the State of Washington, which was used to establish the

validity of these results. Our work using statistically generated databases allowed us to

devise controlled studies whereby the optimal accuracy of the results were known a priori.

In real world datasets, obviously one can not know the best attainable results with high
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precision without a time consuming and expensive human inspection and validation process.

In cases where the datasets are huge, this may not be feasible. Therefore, the results reported

here are due to the human inspection of a small but substantial sample of data relative to

the entire data set. The results on the real-world data validate our previous predictions as

being quite accurate. (One may view the formal results of this comparative evaluation by

browsing the site http://www.cs.columbia.edu/~sal.)

Finally, in section 5, we present initial results on an Incremental Merge/Purge algorithm.

The basic Merge/Purge procedure presented in section 2 assumes a single data set. If a new

data set arrives, it must be concatenated to the previously processed data set and the basic

Merge/Purge procedure executed over this entire data set. The Incremental algorithm re-

moves this restriction by using information gathered from previous Merge/Purge executions.

Several strategies for determining what information to gather at the end of each execution

of the incremental algorithm are proposed. We present initial experimental results showing

that the incremental algorithm reduces the time needed to execute a Merge/Purge procedure

when compared with the basic algorithm.

2 Basic Data Cleansing Solutions

In our previous work we introduced the basic \sorted-neighborhood method" for solving

merge/purge as well as a variant \duplicate elimination" method. Here we describe in detail

this basic approach, followed by a description of an incremental variant that merges a new

(smaller) increment of data with an existing previously cleansed dataset.

2.1 The Basic Sorted-Neighborhood Method

Given a collection of two or more databases, we �rst concatenate them into one sequential

list of N records (after conditioning the records) and then apply the sorted-neighborhood

method. The sorted-neighborhood method for solving the merge/purge problem can be

summarized in three phases:

1. Create Keys : Compute a key for each record in the list by extracting relevant �elds

or portions of �elds. The choice of the key depends upon an \error model" that may
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Figure 1: Window Scan during Data Cleansing

be viewed as knowledge intensive and domain-speci�c; the e�ectiveness of the sorted-

neighborhood method highly depends on a properly chosen key with the intent that

common but erroneous data will have closely matching keys. We discuss the e�ect of

the choice of the key in section 2.2.

2. Sort Data : Sort the records in the data list using the key of step 1.

3. Merge : Move a �xed size window through the sequential list of records limiting the

comparisons for matching records to those records in the window. If the size of the

window is w records, then every new record entering the window is compared with the

previous w � 1 records to �nd \matching" records. The �rst record in the window

slides out of the window (See �gure 1).

When this procedure is executed serially as a main-memory based process, the create

keys phase is an O(N) operation, the sorting phase is O(N logN), and the merging phase is

O(wN), where N is the number of records in the database. Thus, the total time complexity

of this method is O(N logN) if w < dlogNe, O(wN) otherwise. However, the constants in

the equations di�er greatly. It could be relatively expensive to extract relevant key values

from a record during the create key phase. Sorting requires a few machine instructions to

compare the keys. The merge phase requires the application of a potentially large number

of rules to compare two records, and thus has the potential for the largest constant factor.
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Notice that w is a parameter of the window-scanning procedure. The legitimate values of

w may range from 2 (whereby only two consecutive elements are compared) to N (whereby

each element is compared to all others). The latter case pertains to the full quadratic (O(N

2

))

time process at the maximal potential accuracy (as de�ned by the equational theory to be the

percentage of all duplicates correctly found in the merging process). The former case (where

w may be viewed as a small constant relative to N) pertains to optimal time performance

(onlyO(N) time) but at minimal accuracy. The fundamental question is what are the optimal

settings for w to maximize accuracy while minimizing computational cost?

Note, however, that for very large databases the dominant cost is likely disk I/O, and

hence the number of passes over the data set. In this case, at least three passes would be

needed, one pass for conditioning the data and preparing keys, at least a second pass, likely

more, for a high speed sort like, for example, the AlphaSort [20], and a �nal pass for window

processing and application of the rule program for each record entering the sliding window.

Depending upon the complexity of the rule program and window size w, the last pass may

indeed be the dominant cost. We introduced elsewhere [16] the means of speeding up this

phase by processing \parallel windows" in the sorted list.

We note with interest that the sorts of optimizations detailed in the AlphaSort paper [20]

may of course be fruitfully applied here. We are more concerned with alternative process

architectures that lead to higher accuracies in the computed results while also reducing the

time complexity. Thus, we consider alternative metrics for the purposes of merge/purge to

include how accurately can you data cleanse for a �xed dollar and given time constraint,

rather than the speci�c cost- and time-based metrics proposed in [20].

2.2 Selection of Keys

The e�ectiveness of the sorted-neighborhood method highly depends on the key selected

to sort the records. Here a key is de�ned to be a sequence of a subset of attributes, or

substrings within the attributes, chosen from the record. For example, consider the four

records displayed in table 1. For this particular application, suppose the \key designer"

for the sorting phase has determined that for a typical data set the following keys should

be extracted from the data since they provide su�cient discriminating power in identifying
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First Last Address ID Key

Sal Stolfo 123 First Street 45678987 STLSAL123FRST456

Sal Stolfo 123 First Street 45678987 STLSAL123FRST456

Sal Stolpho 123 First Street 45678987 STLSAL123FRST456

Sal Stiles 123 Forest Street 45654321 STLSAL123FRST456

Table 1: Example Records and Keys

likely candidates for matching. The key consists of the concatenation of several ordered

�elds (or attributes) in the data: The �rst three consonants of a last name are concatenated

with the �rst three letters of the �rst name �eld, followed by the address number �eld,

and all of the consonants of the street name. This is followed by the �rst three digits of

the social security �eld. These choices are made since the key designer determined that

last names are typically misspelled (due to mistakes in vocalized sounds, vowels), but �rst

names are typically more common and less prone to being misunderstood and hence less

likely to be recorded incorrectly. The keys are now used for sorting the entire dataset with

the intention that all equivalent or matching data will appear close to each other in the

�nal sorted list. Notice how the �rst and second records are exact duplicates, while the

third is likely the same person but with a misspelled last name. We would expect that this

\phonetically-based" mistake will be caught by a reasonable equational theory. However,

the fourth record, although having the exact same key as the prior three records, appears

unlikely to be the same person.

2.3 Equational theory

The comparison of records, during the merge phase, to determine their equivalence is a

complex inferential process that considers much more information in the compared records

than the keys used for sorting. For example, suppose two person names are spelled nearly

(but not) identically, and have the exact same address. We might infer they are the same

person. On the other hand, suppose two records have exactly the same social security

numbers, but the names and addresses are completely di�erent. We could either assume
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the records represent the same person who changed his name and moved, or the records

represent di�erent persons, and the social security number �eld is incorrect for one of them.

Without any further information, we may perhaps assume the latter. The more information

there is in the records, the better inferences can be made. For example, Michael Smith

and Michele Smith could have the same address, and their names are \reasonably close".

If gender and age information is available in some �eld of the data, we could perhaps infer

that Michael and Michele are either married or siblings.

What we need to specify for these inferences is an equational theory that dictates the logic

of domain equivalence, not simply value or string equivalence. Users of a general purpose

data cleansing facility bene�t from higher level formalisms and languages permitting ease of

experimentation and modi�cation. For these reasons, a natural approach to specifying an

equational theory and making it practical would be the use of a declarative rule language.

Rule languages have been e�ectively used in a wide range of applications requiring inference

over large data sets. Much research has been conducted to provide e�cient means for their

compilation and evaluation, and this technology can be exploited here for purposes of data

cleansing e�ciently.

As an example, here is a simpli�ed rule in English that exempli�es one axiom of our

equational theory relevant to our idealized employee database:

Given two records, r1 and r2.

IF the last name of r1 equals the last name of r2,

AND the first names differ slightly,

AND the address of r1 equals the address of r2

THEN

r1 is equivalent to r2.

The implementation of \differ slightly" speci�ed here in English is based upon the

computation of a distance function applied to the �rst name �elds of two records, and

the comparison of its results to a threshold to capture obvious typographical errors that

may occur in the data. The selection of a distance function and a proper threshold is

also a knowledge intensive activity that demands experimental evaluation. An improperly

chosen threshold will lead to either an increase in the number of falsely matched records

or to a decrease in the number of matching records that should be merged. A number of
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alternative distance functions for typographical mistakes were implemented and tested in the

experiments reported below including distances based upon edit distance, phonetic distance

and \typewriter" distance. The results displayed in section 3 are based upon edit distance

computation since the outcome of the program did not vary much among the di�erent

distance functions for the particular databases used in our study.

Notice that rules do not necessarily need to compare values from the same attribute (or

same domain). For instance, to detect a transposition in a person's name we could write a

rule that compares the �rst name of one record with the last name of the second record and

the last name of the �rst record with the �rst name of the second record (see appendix A for

such an example rule). Modern object-relational databases allow users to add complex data

types (and functions to manipulate values in the domain of the data type) to the database

engine. Functions to compare these complex data types (e.g., sets, images, sound, etc.) could

also be used within rules to perform the matching of complex tuples.

For the purpose of experimental study, we wrote an OPS5 [13] rule program consisting

of 26 rules for this particular domain of employee records and was tested repeatedly over

relatively small databases of records. Once we were satis�ed with the performance of our

rules, distance functions, and thresholds, we recoded the rules directly in C to obtain speed-

up over the OPS5 implementation.

Appendix A shows the OPS5 version of the equational theory implemented for this work.

Only those rules used encoding the knowledge of the equational theory are shown in the

appendix.

The inference process encoded in the rules is divided into three stages. In the �rst stage,

all records within a window are compared to see if they have \similar" �elds, namely, the

social security �eld, the name �eld, and the street address �eld. In the second stage, the

information gathered during the �rst stage is combined to see if can merge pairs of records.

For example, if a pair of records have similar social security numbers and similar names

then the rule similar-ssn-and-names declares them merged. For those pair of records that

could not be merged because not enough information was gathered on the �rst stage, the rule

program takes a closer look at other �elds like the city name, state and zipcode to see if a

merge can be done. Otherwise, in the third stage, more precise \edit-distance" functions are
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SSN Name (First, Initial, Last) Address

334600443 Lisa Boardman 144 Wars St.

334600443 Lisa Brown 144 Ward St.

525520001 Ramon Bonilla 38 Ward St.

525250001 Raymond Bonilla 38 Ward St.

0 Diana D. Ambrosion 40 Brik Church Av.

0 Diana A. Dambrosion 40 Brick Church Av.

0 Colette Johnen 600 113th St. apt. 5a5

0 John Colette 600 113th St. ap. 585

850982319 Ivette A Keegan 23 Florida Av.

950982319 Yvette A Kegan 23 Florida St.

Table 2: Example of matching records detected by our equational theory rule base.

used over some �elds as a last attempt for merging a pair of records. Table 2 demonstrates

a number of actual records the rule-program correctly deems equivalent.

Appendix B shows the C version of the equational theory. The appendix only shows the

subroutine rule program() which is the main code for the rule implementation in C. The

comments in the code show where each rule of the OPS5 version is implemented.

It is important to note that the essence of the approach proposed here permits a wide

range of equational theories on various data types. We chose to use string data in this study

(e.g., names, addresses) for pedagogical reasons (after all everyone gets \faulty" junk mail).

We could equally as well demonstrate the concepts using alternative databases of di�erent

typed objects and correspondingly di�erent rule sets.

Table 2 displays records with such errors that may commonly be found in mailing lists,

for example. (Indeed, poor implementations of the merge/purge task by commercial orga-

nizations typically lead to several pieces of the same mail being mailed at obviously greater

expense to the same household, as nearly everyone has experienced.) These records are

identi�ed by our rule base as equivalent.

The process of creating a good equational theory is similar to the process of creating

a good knowledge-base for an expert system. In complex problems, an expert is needed to

describe the matching process. A knowledge engineer will then encode the expert's knowledge
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as rules. The rules will then be tested and the results discussed with the expert. Several

sessions between the expert and the knowledge-engineer might be needed before the rule set

is completed.

2.4 Computing the transitive closure over the results of inde-

pendent runs

In general, no single key will be su�cient to catch all matching records. The attributes or

�elds that appear �rst in the key have higher discriminating power than those appearing

after them. Hence, if the error in a record occurs in the particular �eld or portion of the

�eld that is the most important part of the key, there may be little chance a record will end

up close to a matching record after sorting. For instance, if an employee has two records in

the database, one with social security number 193456782 and another with social security

number 913456782 (the �rst two numbers were transposed), and if the social security number

is used as the principal �eld of the key, then it is very unlikely both records will fall under the

same window, i.e. the two records with transposed social security numbers will be far apart

in the sorted list and hence they may not be merged. As we will show in the next section,

the number of matching records missed by one run of the sorted-neighborhood method can

be large unless the neighborhood grows very large.

To increase the number of similar records merged, two options were explored. The �rst is

simply widening the scanning window size by increasing w. Clearly this increases the com-

putational complexity, and, as discussed in the next section, does not increase dramatically

the number of similar records merged in the test cases we ran (unless of course the window

spans the entire database which we have presumed is infeasible under strict time and cost

constraints).

The alternative strategy we implemented is to execute several independent runs of the

sorted-neighborhood method, each time using a di�erent key and a relatively small window.

We call this strategy the multi-pass approach. For instance, in one run, we use the address

as the principal part of the key while in another run we use the last name of the employee

as the principal part of the key. Each independent run will produce a set of pairs of records

which can be merged. We then apply the transitive closure to those pairs of records. The
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results will be a union of all pairs discovered by all independent runs, with no duplicates,

plus all those pairs that can be inferred by transitivity of equality.

The reason this approach works for the test cases explored here has much to do with the

nature of the errors in the data. Transposing the �rst two digits of the social security number

leads to non-mergeable records as we noted. However, in such records, the variability or error

appearing in another �eld of the records may indeed not be so large. Therefore, although

the social security numbers in two records are grossly in error, the name �elds may not be.

Hence, �rst sorting on the name �elds as the primary key will bring these two records closer

together lessening the negative e�ects of a gross error in the social security �eld.

Notice that the use of a transitive closure step is not limited to the multi-pass approach.

We can improve the accuracy of a single pass by computing the transitive closure of the

results. If records a and b are found to be similar and, at the same time, records b and c

are also found to be similar, the transitive closure step can mark a and c to be similar if

this relation was not detected by the equational theory. Moreover, records a and b must be

within w records to be marked as similar by the equational theory. The same is true for

records b and c. But, if the transitive closure step is used, a and c need not be within w

records to be detected as similar. The use of a transitive closure at the end of any single-pass

run of the sorted-neighborhood method should allow us to reduce the size of the scanning

window w and still detect a comparable number of similar pairs as we would �nd without a

�nal closure phase and a larger w. All single run results reported in the next section include

a �nal closure phase.

The utility of this approach is therefore determined by the nature and occurrences of the

errors appearing in the data. The choice of keys for sorting, their order, and the extraction of

relevant information from a key �eld is a knowledge intensive activity that must be explored

and carefully evaluated prior to running a data cleansing process.

In the next section we will show how the multi-pass approach can drastically improve

the accuracy of the results of only one run of the sorted-neighborhood method with varying

large windows. Of particular interest is the observation that only a small search window

was needed for the multi-pass approach to obtain high accuracy while no individual run with

a single key for sorting produced comparable accuracy results with a large window (other
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than window sizes approaching the size of the full database). These results were found

consistently over a variety of generated databases with variable errors introduced in all �elds

in a systematic fashion.

3 Experimental Results

3.1 Generating the databases

All databases used to test these methods were generated automatically by a database gener-

ator that allows us to perform controlled studies and to establish the accuracy of the solution

method. This database generator provides a user with a large number of parameters that

they may set including, the size of the database, the percentage of duplicate records in the

database, and the amount of error to be introduced in the duplicated records in any of

the attribute �elds. Accuracy is measured as the percentage of the number of duplicates

correctly found by the process. False positives are measured as the percentage of records

claimed to be equivalent but which are not actual duplicates.

Here, each generated database is viewed as the concatenation of multiple databases. The

merging of records in the resultant single database is the object of study in these experiments.

Each record generated consists of the following �elds, some of which can be empty: social

security number, �rst name, initial, last name, address, apartment, city, state, and zip code.

The names were chosen randomly from a list of 63000 real names

1

. The cities, states, and

zip codes (all from the U.S.A) come from publicly available lists

2

.

The data generated was intended to be a good model of what might actually be processed

in real-world datasets. The errors introduced in the duplicate records range from small

typographical mistakes, to complete change of last names and addresses. When setting

the parameters for typographical errors, we used known frequencies from studies in spelling

correction algorithms [21, 7, 17]. For this study, the generator selected from 10% to 50% of

the generated records for duplication with errors, where the error in the spelling of words,

1

See ftp://ftp.denet.dk/pub/wordlists

2

Ftp into cdrom.com and cd /pub/FreeBSD/FreeBSD-current/src/share/misc .
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names and cities was controlled according to these published statistics found for common

real world datasets.

In this paper, the performance measurement of accuracy (percentage of duplicates cap-

tured) using this \standard error model" is plotted over varying sized windows so that we

may better understand the relationship and tradeo�s between computational complexity and

accuracy. We do not believe the results will be substantially di�erent for di�erent databases

with the same sorts of errors in the duplicated records. Future work will help to better

establish this conjecture over widely varying error models, a�orded by our database genera-

tor. However, other statistically generated databases may bear no direct relationship to real

data. We believe the present experiments are more realistic. Section 5 provides substantial

evidence for this case.

3.2 Results on accuracy

The purpose of this �rst experiment was to determine baseline accuracy of the sorted-

neighborhood method. We ran three independent runs of the sorted-neighborhood method

over each database, and used a di�erent key during the sorting phase of each independent

run. On the �rst run the last name was the principal �eld of the key (i.e., the last name

was the �rst attribute in the key). On the second run, the last name was the principal �eld,

while, in the last run, the street address was the principal �eld. Our selection of the attribute

ordering of the keys was purely arbitrary. We could have used the social-security number

instead of, say, the street address. We assume all �elds are noisy (and under the control of

our data generator to be made so) and therefore it does not matter what �eld ordering we

select for purposes of this study.

Figure 2(a) shows the e�ect of varying the window size from 2 to 60 records in a database

with 1,000,000 records and with an additional 423644 duplicate records with varying errors.

A record may be duplicated more than once. Notice that each independent run found from

50% to 70% of the duplicated pairs. Notice also that increasing the window size does not

help much and taking in consideration that the time complexity of the procedure goes up as

the window size increases, it is obviously fruitless at some point to use a large window.

The line marked as Multi-pass over 3 keys in �gure 2(a) shows our results when the
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Figure 2: Accuracy results for a 1,000,000 records database

program computes the transitive closure over the pairs found by the three independent runs.

The percent of duplicates found goes up to almost 90%. A manual inspection of those records

not found as equivalent revealed that most of them are pairs that would be hard for a human

to identify without further information.

The equational theory is not completely trustworthy. It can decide that two records

are similar or equivalent even though they may not represent the same real-world entity;

these incorrectly paired records are called \false-positives". Figure 2(b) shows the percent

of those records incorrectly marked as duplicates as a function of the window size. The

percent of false positives is almost insigni�cant for each independent run and grows slowly

as the window size increases. The percent of false positives after the transitive closure is

also very small, but grows faster than each individual run alone. This suggests that the

transitive-closure may not be as accurate if the window size of each constituent pass is very

large!

The number of independent runs needed to obtain good results with the computation

of the transitive closure depends on how corrupt the data is and the keys selected. The

more corrupted the data, more runs might be needed to capture the matching records. The

transitive closure, however, is executed on pairs of tuple id's, each at most 30 bits, and fast
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Figure 3: Time performance of the sorted-neighborhood methods for di�erent size databases.

solutions to compute transitive closure exist [2]. From observing real world scenarios, the

size of the data set over which the closure is computed is at least one order of magnitude

smaller than the corresponding database of records, and thus does not contribute a large

cost. But note we pay a heavy price due to the number of sorts or clusterings of the original

large data set. We presented some parallel implementation alternatives to reduce this cost

in [16].

3.2.1 Scaling Up

Finally, we demonstrate that the sorted-neighborhood method scales well as the size of the

database increases. Due to the limitations of our available disk space, we could only grow our

databases to about 3,000,000 records. We again ran three independent runs of the sorted-

neighborhood method, each with a di�erent key, and then computed the transitive closure

of the results. We did this for the 12 databases in Table 3.2.1. We started with four (4)

\no-duplicate databases" and for each we created duplicates for 10%, 30%, and 50% of the

records, for a total of twelve (12) distinct databases. The results are shown in Figure 3. For

these relatively large size databases, the time seems to increase linearly as the size of the

databases increase independent of the duplication factor.
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Original number Total records Total size (Mbytes)

of records 10% 30% 50% 10% 30% 50%

500000 584495 754354 924029 45.4 58.6 71.8

1000000 1169238 1508681 1847606 91.3 118.1 144.8

1500000 1753892 2262808 2770641 138.1 178.4 218.7

1750000 2046550 2639892 3232258 161.6 208.7 255.7

Table 3: Database sizes

3.3 Analysis

The natural question to pose is when is the multi-pass approach superior to the single-pass

case? The answer to this question lies in the complexity of the two approaches for a �xed

accuracy rate (here we consider the percentage of correctly found matches).

Here we consider this question in the context of a main-memory based sequential process.

The reason being that, as we shall see, clustering provides the opportunity to reduce the

problem of sorting the entire disk-resident database to a sequence of smaller, main-memory

based analysis tasks. The serial time complexity of the multi-pass approach (with r passes) is

given by the time to create the keys, the time to sort r times, the time to window scan r times

(of window size w) plus the time to compute the transitive closure. In our experiments, the

creation of the keys was integrated into the sorting phase. Therefore, we treat both phases

as one in this analysis. Under the simplifying assumption that all data is memory resident

(i.e., we are not I/O bound),

T

multipass

= c

sort

rN logN + c

wscan

rwN + T

closure

mp

where r is the number of passes and T

closure

mp

is the time for the transitive closure. The

constants depict the costs for comparison only and are related as c

wscan

= �c

sort

, where

� > 1. From analyzing our experimental program, the window scanning phase contributes

a constant, c

wscan

, which is at least � = 6 times as large as the comparisons performed

in sorting. We replace the constants in term of the single constant c. The complexity

of the closure is directly related to the accuracy rate of each pass and depends upon the
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duplication in the database. However, we assume the time to compute the transitive closure

on a database that is orders of magnitude smaller than the input database to be less than

the time to scan the input database once (i.e. it contributes a factor of c

closure

N < N).

Therefore,

T

multipass

= crN logN + �crwN + T

closure

mp

for a window size of w. The complexity of the single pass sorted-neighborhood method is

similarly given by:

T

singlepass

= cN logN + �cWN + T

closure

sp

for a window size of W.

For a �xed accuracy rate, the question is then for what value of W of the single pass

sorted-neighborhood method does the multi-pass approach perform better in time, i.e.,

cN logN + �cWN + T

closure

sp

> crN logN + �crwN + T

closure

mp

or

W >

r � 1

�

logN + rw +

1

�cN

�

T

closure

mp

� T

closure

sp

�

To validate this model, we generated a small database of 13,751 records (7,500 original

records, 50% selected for duplications, and 5 maximum duplicates per selected record. The

total size of the database in bytes was approximately 1 MByte. Once read, the database

stayed in core during all phases. We ran three independent single-pass runs using di�erent

keys and a multi-pass run using the results of the three single-pass runs. The parameters

for this experiment were N = 13751 records and r = 3. For this particular case where

w = 10, we have � ' 6, c ' 1:2 � 10

�5

, T

closure

sp

= 1:2s, and T

closure

mp

= 7. (Time is

speci�ed in seconds (s).) Thus, the multi-pass approach dominates the single sort approach

for these datasets when W > 41.

Figure 4(a) shows the time required to run each independent run of the on one processor,

and the total time required for the multi-pass approach while �gure 4(b) shows the accuracy

of each independent run as well as the accuracy of the multi-pass approach (please note

the logarithm scale). For w = 10, �gure 4(a) shows that the multi-pass approach needed
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Figure 4: Time and Accuracy for a Small Database

56:3s to produce an accuracy rate of 93.4% (�gure 4(b)). Looking now at the times for each

single-pass run, their total time is close to 56s for W = 52, slightly higher than estimated

with the above model. But the accuracy of all single-pass runs in �gure 4(b) at W = 52 are

from 73% to 80%, well below the 93.4% accuracy level of the multi-pass approach. Moreover,

no single-pass run reaches an accuracy of more than 93% until W > 7000, at which point

(not shown in �gure 4(a)) their execution time are over 4,800 seconds (80 minutes).

Let us now consider the issue when the process is I/O bound rather than a compute-

bound main-memory process. Let B be the number of disk blocks used by the input data set

andM the number of memory pages available. Each sorted-neighborhood method execution

will access 2B log

M�1

B disk blocks

3

, plus B disk blocks will be read by the window scanning

phase. The time for the sorted-neighborhood method can be expressed as:

T

snm

= 2c

sort

B log

M�1

B + c

wscan

B

where c

sort

represents the CPU cost of sorting the data in one block and c

wscan

represents

the CPU cost of applying the window-scan method to the data in one block.

3

The 2 comes from the fact that we are counting both read and write operations.
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Instead of sorting, we could divide the data into C buckets (e.g., hashing the records or

using a multi-dimensional partitioning strategy [15]). We call this modi�cation the clustering

method. AssumingM = C+1, (1 page for each bucket plus one page for processing an input

block), we need one pass over the entire data to partition the records into C buckets (B

blocks are read). Writing the records into the buckets requires, approximately, B block

writes. Assuming the partition algorithm is perfect, each bucket will use d

B

C

e blocks. We

must then sort (2B log

M�1

d

B

C

e block accesses) and apply the window-scanning phase to each

bucket independently (approximately B block accesses). In total, the clustering method

requires approximately 3B + 2B log

M�1

d

B

C

e block accesses. The time for one pass of the

clustering method can be expressed as:

T

cluster

= 2c

cluster

B + 2c

sort

B log

M�1

d

B

C

e+ c

wscan

B

where c

cluster

is the CPU cost of partitioning one block of data.

Finally, the I/O cost of the multi-pass approach will be a multiple of the I/O cost of the

method we chose for each pass plus the time needed to compute the transitive closure step.

For instance, if we use the clustering method for 3 passes, we should expect about a time of

about 3T

cluster

+ T

xclosure

.

Figure 5 shows a time comparison between the clustering method and the sorted-neighborhood

method. These results where gathered using a generated data set of 468,730 records (B =

31; 250, block size = 1,024 bytes, M = 33 blocks). Notice that in all cases, the clustering

method does better than the sorted-neighborhood method. However, the di�erence in time

is not large. This is mainly due to the fact that the equational theory used involved a large

number of comparisons making c

wscan

a lot larger than both c

sort

and c

cluster

. Thus, even

though there are some time savings in initially partitioning the data, the savings are small

compared to the overall time cost.

In [16] we describe parallel variants of the basic techniques (including clustering) to show

that with a modest amount of \cheap" parallel hardware, we can speed-up the multi-pass

approach to a level comparable to the time to do a single-pass approach, but with a very

high accuracy, i.e. a few small windows ultimately wins.
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4 Results on Real-World Data

Even though the results we have achieved on a wide variety of statistically controlled gener-

ated data indicate that the multi-pass approach is quite good, some may not regard this as

a de�nitive validation of the e�cacy of the techniques.

The State of Washington Department of Social and Health Services maintains large

databases of transactions made over the years with state residents. In March of 1995 the

O�ce of Children Administrative Research (OCAR) of the Department of Social and Health

Services posted a request on the KDD-nuggets[8] asking for assistance analyzing one of their

databases. We answered their request and this section details our results.

OCAR analyzes the database of payments by the State to families and businesses that

provide services to needy children. OCAR's goal is to answer questions such as: \How

many children are in foster care>`, \How long do children stay in foster care?" \How many

di�erent homes do children typically stay in?" To accurately answer such questions, the many

computer records for payments and services must be identi�ed for each child. (Obviously,

without matching records with the appropriate individual client, the frequency distributions

for such services will be grossly in error.) Because no unique identi�er for an individual

child exists, it must be generated and assigned by an algorithm that compares multiple

service records in the database. The �elds used in the records to help identify a child include
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name, birth date, case number, social security number, each of which is unreliable, containing

misspellings, typographical errors, and incomplete information. This is not a unique situation

in real-world databases. It was the need to develop computer processes that more accurately

identi�ed all records for a given child that spurred OCAR to seek assistance.

4.1 Database Description

Most of OCAR's data is stored in one relation that contains all payments to service providers

since 1984. There are currently approximately 6,000,000 total records in the relation and

this number grows by approximately 50,000 a month. The relation has 19 attributes, of

which the most relevant (those carrying information that can be used to infer the identify

of individual entities) are: First Name, Last Name, Birthday, Social Security Number, Case

Number, Service ID, Service dates (beginning and ending dates), Gender and Race, Provider

ID, Amount of Payment, Date of Payment, and Worker ID. Each record is 105 bytes long.

The typical problems with the OCAR data are as follows:

1. Names are frequently misspelled. Sometimes nicknames or \similar sounding" names

are used instead of the real name. Also the parent or guardian's name is sometimes

used instead of the child's name.

2. Social security numbers or birthdays are missing or clearly wrong (e.g., some records

have the social security number \999999999"). Likewise, the parent or guardian's

information is sometimes used instead of the child's proper information.

3. The case number, which should uniquely identify a family, often changes when a child's

family moves to another part of the state, or is referred for service a second time after

more than a couple years since the �rst referral.

4. There are records which cannot be assigned to any person because the name entered

in the record was not the child's name, but that of the service provider. Also, names

like \Anonymous Male" and \Anonymous Female" were used. (We call this last type

of records ghost records.)
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Figure 6: Number of records per Child as computed by OCAR (The graph is drawn only to

a cluster size of 50. In actuality, it continues to 500!).

Because of the private nature of the data recorded in the database, we cannot produce

sample records to illustrate each of the mentioned cases. Even so, any database administrator

responsible for large corporate or agency databases will immediately see the parallels here

to their data. (After all, real-world data is very dirty!)

OCAR provided a sample of their database to conduct this study. The sample, which

contains the data from only one service o�ce, has 128,438 records (13.6 Mbytes). They

also provided us with their current individual identi�cation number for each record in the

sample (the number that should uniquely identify each child in the database) according to

their own analysis. These OCAR-assigned identi�ers serve as our basis for comparing the

accuracy over varying window sizes.

Figure 6 shows the distribution of the number of records per individual detected by

OCAR. Most individuals in the database are represented on average by 1 to 10 records in

the database (approximately 2,000 individuals are represented by 1 record in the database).

Note that individuals may be represented by as much as 30-40 records and, although not

shown in �gure 6, there are some individuals with more than 100 records, and one with

about 500 records. Our task is to apply our data cleansing techniques to compute a new

individual identi�cation number for each record and compare its accuracy to that attained

by the OCAR provided identi�cation number.
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4.2 Data Cleansing OCAR's data

OCAR's individual identi�cation numbers are, of course, not perfect. This set of identi�ers

was computed by a single-scan clustering technique based upon hashing the records using

the �rst four letters of the last name, the �rst three letters of the �rst name, the birth month

and year, and the case number as hashing keys. This strategy identi�ed 8,504 individuals in

the sample database.

Our �rst task was to create an equational theory in consultation with an OCAR's expert

4

.

The resultant rule base consists of 24 rules. We applied this equational theory to the data

using the basic sorted-neighborhood method, as well as the multi-pass method for a rigorous

comparative evaluation. We used the following keys for each independent run:

1. Last Name, First Name, Social Security Number, and Case Number.

2. First Name, Last Name, Social Security Number, and Case Number.

3. Case Number, First Name, Last Name, and Social Security Number.

4

Timothy Clark, Computer Information Consultant for OCAR, provided the necessary expertise to de�ne

the rule base.
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OCAR

0

s Analysis : fR1; R2; R3g fR4; R5g fR6; R7; R8g fR9; R10g

SNM

0

s Analysis : fR1; R2; R3g fR4g fR5g fR6; R7; R8; R9; R10g

The separation of fR4, R5g by the sorted-neighborhood method is counted as a \possible miss".

The union of fR6, R7, R8g fR9, R10g is counted as a \possible false-positive".

Figure 8: Example of the de�nition of \possible misses" and \possible false-positives"

Figure 7 displays the number of individuals detected by each independent pass of the

basic sorted-neighborhood method and the number of individuals after the closure phase as

a function of the window size used. The constant 8,504 individuals detected by OCAR are

plotted as a straight line as a means of comparison. As with the statistically generated data,

the number of individuals detected here initially goes down as the window size increases

but then stabilizes and remains almost constant. Notice also the large improvement in the

performance when combining the results of all passes with the transitive closure phase

5

.

Thus, the results demonstrated under our controlled studies are validated by this set of

real-world data.

For a window size of 10, the multi-pass process detected 8,125 individuals in the sample.

The question we must then answer is whether those 8,125 individuals are closer to the actual

number of individuals in the data than OCAR's 8,504 individuals. To answer this question,

we looked at the di�erent group of individuals detected by OCAR and our sample results.

We call \possible misses" those groups of individuals that our data cleansing program

considered di�erent while OCAR considered similar. We also call \possible false-positives"

those groups of individuals that OCAR did not consider similar but where grouped together

by our system. Figure 8 shows an example of a \miss" and a \false-positive" under this

5

Even though we used three passes for the experiments we describe here, two passes using only the �rst

and the third key would have produced almost similar results. The second key pass only marginally improved

the results. This signi�cant observation may occur in other real-world data indicating that the multi-pass

approach may simply be a \two-pass" approach, signi�cantly reducing the complexity of the process while

still achieving accurate results.
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Figure 9: Accuracy results of sorted-neighborhood method over OCAR's data

de�nition. Figure 9 depicts the number of possible misses and possible false-positives when

comparing our results with OCAR's. As in our previous experiments, the total number of

misses goes down as the window size goes up, and drops sharply after the transitive closure

phase. The behavior of the false-positives is, as expected, contrary to that of the misses: the

number grows with the window size and goes up after the transitive closure phase.

For the multi-pass sorted-neighborhood method to improve on OCAR's results the fol-

lowing two conditions must be met:

� The number of possible misses our data cleansing program correctly did not merge

should be larger than the number of \real misses" (those that OCAR correctly merged

but our program did not.)

� The number of possible false-positives where records were correctly merged by the

multi-pass sorted-neighborhood method should be larger than the real false-positives

(cases where our approach incorrectly merged records that OCAR did not).

To study whether our results met the above conditions, we and the OCAR group manually

inspected the possible misses and the possible false-positives for the case when the window

size was 10. The results of this manual inspection are as follows:
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� Possible Misses: The multi-pass sorted-neighborhood method failed to detect 96

individuals that OCAR detected. Of these 96 possible misses:

{ 44 (45.8%) were correctly separated by our approach and therefore not real misses.

(OCAR's results on these are wrong.)

{ 26 (27.1%) were incorrectly separated by our approach and therefore real misses.

{ 26 (27.1%) were special cases involving \ghost" records or records of payments

to outside agencies. We agreed with OCAR to exclude these cases from further

consideration.

� Possible False Positives: There were 580 instances of the multi-pass sorted-neighborhood

method joining records as individuals that OCAR's did not. Of these 580 cases, we

manually inspected 225 (38.7%) of them with the following results:

{ 14.0% of them were incorrectly merged by our approach.

{ 86.0% where correctly merged by our approach.

By way of summary, 45.8% of the possible misses are not real misses but correctly classi-

�ed records, and an estimated 86.0% of the possible false-positives are not real false positives.

These results lead OCAR to be con�dent that the multi-pass sorted-neighborhood method

will improve their individual detection procedure.

5 Incremental Merge/Purge

All versions of the sorted-neighborhood method we discussed in section 2 started the proce-

dure by �rst concatenating the input lists of tuples. This concatenation step is unavoidable

and presumably acceptable the �rst time a set of databases is received for processing. How-

ever, once the data has been cleansed (via the merge/purge process) and stored for future

use, concatenation of this processed data with recently arrived data before re-applying a

merge/purge process might not be the best strategy to follow. In particular, in situations

where new increments of data are available in short periods of time, concatenating all data

before merging and purging could prove prohibitively expensive in both time and space
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required. In this section we describe an incremental version of the sorted-neighborhood pro-

cedure and provide some initial time and accuracy results for statistically generated datasets.

Figure 10 summarizes an incremental Merge/Purge algorithm. The algorithm speci�es a

loop repeated for each increment of information received by the system. The increment is

concatenated to a relation of prime-representatives pre-computed from the previous run of

the incremental Merge/Purge algorithm, and any multi-pass sorted-neighborhood method is

applied to the resulting relation. Here prime-representatives are a set of records extracted

from each cluster of records used to represent the information in its cluster. From the

pattern recognition community, we can think of these prime-representatives as analogous to

the \cluster centroids" [10] generally used to represent clusters of information, or as the base

element of an equivalence class.

Initially, no previous set of prime-representatives exists and the �rst increment is just

the �rst input relation. The concatenation step has, therefore, no e�ect. After the execution

of the merge/purge procedure, each record from the input relation can be separated into

clusters of similar records. The �rst time the algorithm is used, all records will go into new

clusters. Then, starting the second time the algorithm is executed, records will be added to

previously existing clusters as well as new clusters.

Of particular importance to the success of this incremental procedure, in terms of ac-

curacy of the results, is the correct selection of the prime-representatives of each formed

cluster. As with many other phases of the merge/purge procedure, this selection is also a

knowledge-intensive operation where the domain of each application will determine what is

a good set of prime-representatives. Before describing some strategies for selecting these

representatives, note that the description of step 4 of the algorithm in Figure 10 also im-

plies that for some clusters, the best prime-representative is no representative at all. For a

possible practical example where this strategy is true, consider the OCAR data described

in chapter 4. There, clusters containing records dated as more than 10 years old are very

unlikely to receive a new record. Such clusters can be removed from further consideration

by not selecting a prime-representative for them.

In the case where one or more prime-representatives per cluster are necessary, here are

some possible strategies for their selection:
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i
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i

.
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i
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previous step.

4. For every cluster of records, if necessary, select one or more

records as prime representatives for the cluster. Call the

relation formed of all selected prime representatives, c

i+1

.

end.

Figure 10: Incremental Merge/Purge Algorithm
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� Random Sample: Select a sample of records at random from each cluster.

� N-Latest: Data is sometimes physically ordered by the time of entry into the relation.

In many such cases, the most recent elements entered in the database can be assumed

to better represent the cluster (e.g., the OCAR data is such an example). In this

strategy, the N latest elements are selected as prime-representatives.

� Generalization: Generate the prime-representatives by generalizing the data col-

lected from several positive examples (records) of the concept represented by the clus-

ter. Techniques for generalizing concepts are well known from machine learning[9, 18].

� Syntactic: Choose the largest or more complete record.

� Utility: Choose the record that matched others more frequently.

In this section we present initial results comparing the time and accuracy performance

of incremental Merge/Purge with the basic Merge/Purge algorithm. We selected the N-

Latest prime-representative strategy for our experiments for its implementation simplicity.

Experiments are underway to test and compare all the above strategies. Results will be

described in a future report.

Two important assumptions were made while describing the Incremental Merge/Purge

algorithm. First, it was assumed that no data previously used to select each cluster's prime-

representative will be deleted (i.e., no negative deltas). Second, it was also assumed that

no changes in the rule-set will occur after the �rst increment of data is processed. We now

discuss, briey, the implications of these two assumptions.

Removing records already clustered could split some clusters. If a removed record was

responsible for merging two clusters, the original two clusters so merged will become sepa-

rated. Two new prime-representatives must be computed before the next increment of data

arrives for processing. The procedure to follow in case of deletions is the following:

1. Delay all deletions until after step 3 of the Incremental Algorithm in Figure 10.

2. Perform all deletions. Remember cluster IDs of all clusters a�ected.

3. Re-compute the closure in all clusters a�ected, splitting existing clusters as necessary.
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Then, the IncrementalAlgorithm resumes at step 4 by recomputing a new prime-representative

for all clusters, including the new one formed after the deletions.

Changes to the data are a little more di�cult. Changes could be treated as a deletion

followed by an insertion. However, it is often the case (in particular, if it is a human making

the change) that the new record should belong to the same cluster as the removed one. Here a

user-set parameter should determine how and in what circumstances changes to data should

be treated as a deletion followed by an insertion (to be evaluated in the next increment

evaluation) or just a direct change into an existing cluster.

Changes of the rule-base de�ning the equational theory are evenmore di�cult to correctly

incorporate into the Incremental Algorithm. Minor changes to the rule-base (for example,

small changes to some thresholds de�ning equality over two �elds, deletion of rules that

have rarely �red) are expected to have little impact on the contents of the formed clusters.

Nonetheless, depending on the data or if major changes are made to the rule-base, a large

number of current clusters could be erroneous. Unfortunately, the only solution to this

problem is to run a Merge/Purge procedure once again using all available data. On the other

hand, depending on the application, a slight number of inconsistencies might be acceptable

therefore avoiding the need to run the entire procedure. Here, once again, the decision is

highly application dependent and requires human intervention to resolve.

5.1 Initial experimental results on the Incremental Algorithm

We conducted a number of experiments to test the incremental Merge/ Purge algorithm.

In these experiments we were interested in studying the time performance of the di�erent

stages of the algorithm and the e�ect on the accuracy of the results.

To this end, we started with the OCAR sample described in section 4.1 (128,439 records)

and divided it into �ve (5) parts, �

0

;�

1

;�

2

;�

3

;�

4

, with 25; 000, 25; 000, 25; 000, 25; 000

and 28; 439 records, respectively. The incremental Merge/Purge algorithm was implement

as a UNIX shell script which concatenated and fed the proper parts to the basic multi-

pass sorted-neighborhood method. An AWK script combined with a C program was used

to implement the prime-representative selection part of the algorithm. The only strategy

tested was the N-latest strategy, where N = 1 (i.e., only the latest record in a cluster was
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Figure 11: Incremental vs. Normal Multi-Pass Merge/Purge Times

used as prime-representative).

Figure 11 shows the time results for the �ve-part incremental Merge/Purge procedure in

contrast to the normal (non-incremental) Merge/Purge. These results were obtained with a

three-pass basic multi-pass approach using the keys described in section 4.2, a window-size

of 10 records, and using a Sun 5 Workstation running Solaris 2.3.

The results in Figure 11 are divided by deltas. Five bars, each representing the actual

time for a particular measured phase, are present for each division in Figure 11. The �rst

bar corresponds to the time taken to collect the prime-representatives of the previous run of

the multi-pass approach (note this bar is 0 for the �rst delta). The second bar represents the

time for executing the multi-pass approach over the concatenation of the current delta with

the prime-representatives records. The total time for the incremental Merge/Purge process

is the addition of these two times and is represented by the third bar. The fourth bar shows

the accumulated total time after each incremental Merge/Purge procedure. Finally, the last

bar shows the time for a normal Merge/Purge procedure running over a databases composed

of the concatenation of all deltas, up to and including the current one.

Notice that for every case after the �rst delta, the total time for the incrementalMerge/Purge

process is considerably less than the time for the normal process. For all cases tested in this
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Figure 12: Accuracy of the Incremental M/P procedure

experiment, the cumulative time for the incremental Merge/Purge process was larger than

the total time for the normal Merge/Purge. This is due to the large time cost of clustering

and selecting the prime-representative records for each cluster. In the current implementa-

tion, the entire dataset (the concatenation of all deltas, up to an including the current one)

is sorted to �nd the clusters and all records in the cluster are considered when selecting the

prime-representatives. This is clearly not the optimal solution for the clustering of records

and the selection of prime-representatives. A better implementation could incrementally

select prime-representatives based on the previously computed one. The current implemen-

tation, nonetheless, gives a \worst-case" execution time for this phase. Any optimization

will only decrease the total incremental Merge/Purge time.

Finally, Figure 12 compares the accuracy results of the incremental Merge/Purge proce-

dure with the normal procedure. The total number of individuals (clusters) detected, the

number of possible misses and the number of possible false-positives went up with the use of

the incremental Merge/Purge procedure. Nonetheless, the increase of all measures is almost

negligible and arguably acceptable given the remarkable reduction of time provided by the

incremental procedure.
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6 Conclusion

The sorted-neighborhood method is expensive due to the sorting phase, as well as the need

to search in large windows for high accuracy. Alternative methods based on data clustering

modestly improves the process in time as reported elsewhere. However, neither achieves

high accuracy without inspecting large neighborhoods of records. Of particular interest is

that performing the data cleansing process multiple times over small windows, followed by

the computation of the transitive closure, dominates in accuracy for either method. While

multiple passes with small windows increases the number of successful matches, small win-

dows also favor decreases in false positives, leading to high overall accuracy of the merge

phase. An alternative view is that a single pass approach would be far slower to achieve a

comparable accuracy as a multi-pass approach.

The results we demonstrate for statistically generated databases provide the means of

quantifying the accuracy of the alternative methods. In real-world data we have no com-

parable means of rigorously evaluating these results. Nevertheless, the application of our

program over real-world data provided by the State of Washington Child Welfare Depart-

ment has validated our claims of improved accuracy of the multi-pass method based upon

\eye-balling" a signi�cant sample of data. Thus, what the controlled empirical studies have

shown indicates that improved accuracy will be exhibited for real world data with the same

sorts of errors and complexity of matching as described in this paper.

Finally, the results reported here form the basis of a DataBlade Module available from

Informix Software as the DataCleanser DataBlade. The technology is broadly applicable;

after all, real world data is dirty.
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A OPS5 version of the equational theory

/�

� rule program ( number of tuples, �rst tuple, window size )

� Compare all tuples inside a window. If a match is found,

� call merge tuples().

�/

void

rule program(int ntuples, int start, int wsize)

f

register int i, j;

register WindowEntry �person1, �person2;

boolean similar ssns, similar names, similar addrs;

boolean similar city, similar state, similar zip;

boolean very similar addres, very close aptm,

very close stnum, not close;

/� For all tuples under consideration �/

for (j = start; j < ntuples; j++) f

/� person2 points to the j-th tuple �/

person2 = &tuples[j];

/� For all other tuples inside the window (wsize-1 tuples

� before the j-th tuple).

�/

for (i = j � 1; i > j�wsize && i � 0; i��) f

/� person1 points to the i-th tuple �/

person1 = &tuples[i];

/� Compare person1 with person2 �/

/� RULE: �nd-similar-ssns �/

similar ssns = same ssn p(person1!ssn,person2!ssn,3);

/� RULE: compare-names �/

similar names =

compare names (

person1!name, person2!name,

person1!fname, person1!minit, person1!lname,

person2!fname, person2!minit, person2!lname,

person1!fname init, person2!fname init

);

/� RULE: same-ssn-and-name �/

if (similar ssns && similar names) f

merge tuples(person1, person2);

continue;

g

/� RULE: compare-addresses �/

similar addrs = compare addresses(person1!stname,

person2!stname);

/� Compare other �elds of the address �/

similar city = same city(person1!city, person2!city);

similar zip = same zipcode(person1!zipcode,

person2!zipcode);

similar state =

(strcmp(person1!state, person2!state) == 0);

/� RULEs: closer-addresses-use-zips and

� closer-address-use-states

�/

very similar addrs =

(similar addrs && similar city &&

(similar state jj similar zip));

/� RULEs: same-ssn-and-address and

� same-name-and-address

�/

if ((similar ssns jj similar names) &&

very similar addrs) f

merge tuples(person1, person2);

continue;

g

not close = close but not much(person1!stname,

person2!stname);

if (person1!stnum && person2!stnum)

very close stnum = very close num(person1!stnum,

person2!stnum);

else

very close stnum = FALSE;

if (person1!aptm && person2!aptm)

very close aptm = very close str(person1!aptm,

person2!aptm);

else

very close aptm = FALSE;

/� RULEs: compare-addresses-use-numbers-state,

� compare-addresses-use-numbers-zipcode, and

� same-address-except-city

�/

if ((very close stnum && not close && very close aptm

&& similar city &&

(similar state jj similar zip) && !similar addrs) jj

(similar addrs && very close stnum &&

very close aptm && similar zip)) f

very similar addrs = TRUE;

/� RULEs: same-ssn-and-address and

� same-name-and-address (again) �/

if (similar ssns jj similar names) f

merge tuples(person1, person2);

continue;

g

g

/� RULE: very-close-ssn-close-address �/

if (similar addrs && similar ssns && !similar names)

if (same ssn p (person1!ssn, person2!ssn, 2)) f

merge tuples(person1, person2);

continue;

g

/� RULE: hard-case-1 �/

if (similar ssns && very similar addrs && similar zip &&

same name or initial(person1!fname,person2!fname)) f

merge tuples(person1, person2);

continue;

g

g

g

g
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B C version of the equational theory

/�

� rule program ( number of tuples, �rst tuple, window size )

� Compare all tuples inside a window. If a match is found,

� call merge tuples().

�/

void

rule program(int ntuples, int start, int wsize)

f

register int i, j;

register WindowEntry �person1, �person2;

boolean similar ssns, similar names, similar addrs;

boolean similar city, similar state, similar zip;

boolean very similar addres, very close aptm,

very close stnum, not close;

/� For all tuples under consideration �/

for (j = start; j < ntuples; j++) f

/� person2 points to the j-th tuple �/

person2 = &tuples[j];

/� For all other tuples inside the window (wsize-1 tuples

� before the j-th tuple).

�/

for (i = j � 1; i > j�wsize && i � 0; i��) f

/� person1 points to the i-th tuple �/

person1 = &tuples[i];

/� Compare person1 with person2 �/

/� RULE: �nd-similar-ssns �/

similar ssns = same ssn p(person1!ssn,person2!ssn,3);

/� RULE: compare-names �/

similar names =

compare names (

person1!name, person2!name,

person1!fname, person1!minit, person1!lname,

person2!fname, person2!minit, person2!lname,

person1!fname init, person2!fname init

);

/� RULE: same-ssn-and-name �/

if (similar ssns && similar names) f

merge tuples(person1, person2);

continue;

g

/� RULE: compare-addresses �/

similar addrs = compare addresses(person1!stname,

person2!stname);

/� Compare other �elds of the address �/

similar city = same city(person1!city, person2!city);

similar zip = same zipcode(person1!zipcode,

person2!zipcode);

similar state =

(strcmp(person1!state, person2!state) == 0);

/� RULEs: closer-addresses-use-zips and

� closer-address-use-states

�/

very similar addrs =

(similar addrs && similar city &&

(similar state jj similar zip));

/� RULEs: same-ssn-and-address and

� same-name-and-address

�/

if ((similar ssns jj similar names) &&

very similar addrs) f

merge tuples(person1, person2);

continue;

g

not close = close but not much(person1!stname,

person2!stname);

if (person1!stnum && person2!stnum)

very close stnum = very close num(person1!stnum,

person2!stnum);

else

very close stnum = FALSE;

if (person1!aptm && person2!aptm)

very close aptm = very close str(person1!aptm,

person2!aptm);

else

very close aptm = FALSE;

/� RULEs: compare-addresses-use-numbers-state,

� compare-addresses-use-numbers-zipcode, and

� same-address-except-city

�/

if ((very close stnum && not close && very close aptm

&& similar city &&

(similar state jj similar zip) && !similar addrs) jj

(similar addrs && very close stnum &&

very close aptm && similar zip)) f

very similar addrs = TRUE;

/� RULEs: same-ssn-and-address and

� same-name-and-address (again) �/

if (similar ssns jj similar names) f

merge tuples(person1, person2);

continue;

g

g

/� RULE: very-close-ssn-close-address �/

if (similar addrs && similar ssns && !similar names)

if (same ssn p (person1!ssn, person2!ssn, 2)) f

merge tuples(person1, person2);

continue;

g

/� RULE: hard-case-1 �/

if (similar ssns && very similar addrs && similar zip &&

same name or initial(person1!fname,person2!fname)) f

merge tuples(person1, person2);

continue;

g

g

g

g
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