


Final Exam

Tuesday, December 11, 5:30pm-8pm
This classroom (I assume)

Cumulative, but emphasizes material post-
midterm.

Study old homework assignments, including
programming projects.

| will give you some practice problems for
reinforcement learning since we didn’t have a
homework assignment on that.



Topics

State space search

Constraint satisfaction problems
Adversarial search

Probability

Bayes nets

Nailve Bayes

Hypothesis choosing

Markov chains & Hidden Markov models
Reinforcement learning



Models, Reasoning, and Learning

A model is a way of representing a problem
(think data structure)

— States (used in search trees, game trees, CSPs),

Bayes nets (incl. Naive Bayes), Markov chains,
HMMs, MDPs.



Models, Reasoning, and Learning

* Areasoning algorithm draws conclusions or
makes inferences based on data in a model.

— Search (uniform cost search, greedy best first
search, A*, minimax, alpha-beta pruning), CSP
search, AC-3, exact inference algorithm for Bayes
nets, ML & MAP, inference algorithm in Markov
chains, forward algorithm, backward algorithm,
Viterbi algorithm, value iteration, Q-learning.



Models, Reasoning, and Learning

* Alearning algorithm tries to deduce the
structure or parameters of the model itself
from auxiliary data.

— Training a Naive Bayes classifier.



State Space Search

Represent a partial solution to the problem as
a “state.”

Use an algorithms to find the “best” path
through the state space.

Pros: Often easy to formulate the model:
states and actions.

Cons: Often slow with a mediocre heuristic,
state space is often too big to store explicitly
In memory.



CSPs

Represent a partial solution to the problem as
a “state,” using a set of variables assigned to

values.
No notion of “actions;” move between states
by assigning or re-assigning variables.

Pros: No need for heuristic for each problem;
one algorithm can solve any CSP!

Cons: Still can be slow (uses backtracking
search), can get stuck in local maxima.



Adversarial Search

Still uses a “state,” only we aren’t usually
interested in the entire “best” path, just the
“best” next move.

Can use minimax and alpha-beta pruning to
search the game tree.

Pros: “The” model & algorithm(s) for 2-player
games.

Cons: Can’t represent entire tree in memory, very
slow for large games, still requires heuristics for

deep trees.



Probability

* Way of representing uncertainty in a model or
algorithm.

* Many modern Al techniques based on rules of
probability.

— Often can give better results than heuristic
approaches, where any numbers used may not be
derived from any mathematical rules.

e Algorithms for ML and MAP hypothesis
choosing.



Bayesian Networks

A representation of the conditional
independences that hold among a set of random
variables.

Lets you compute the probability of any event,
given any observation (setting) of a set of other
variables.

Pros: Simple representation, grounded in math

Cons: Hard to learn, exact inference can be slow,
scientist must develop set of appropriate
variables.



Nailve Bayes

Particular kind of Bayes net with nice properties.

Assumes conditional independence among all pieces of
evidence/features/data.

Useful where you need to choose a hypothesis, but
don’t necessarily care about the actual posterior
probability (often the conditional independence
assumption messes that up).

Pros: Very simple, parameters of model easy to learn,
fast algorithms for inference and learning.

Cons: Can make gross oversimplifications, probability
estimates may not be very accurate (though
hypothesis often is).



Markov chains and HMMs

Another type of Bayes net!

Makes Markov assumption: probability
distribution of next state depends only upon
current state. (Sometimes called Markov

property)
Used for sequential or temporal data.
Pros: Only model so far that takes time into

account, efficient algorithms for inference and
learning.

Cons: Again, might be overly simplistic for some
applications.



Reinforcement learning

Model: MDP
Inference: Bellman equations

Learning: Value iteration, Q-learning, lots of
others...

Pros: Simple representation, good for cases
where you’ll be in the same state many times.

Cons: Sloooooooooow, must be able to get
experience by repeating same situations over
and over.



Comparison of models

* Some model-algorithm combinations can
solve “any” problem:

— State-space search/Al*, CSPs/backtracking
* But often they either require

— |lots of engineering on the human’s part
— and/or intractable on real-world problems



Comparison of models

* Other model-algorithm combinations solve
problems very quickly:

— e.g., Naive Bayes and HMMs

* But they only work for problems that fit the
model well.



