
Artificial	Intelligence	Homework	1	
	
If	you	have	not	already	done	so,	read	textbook	sections	3.1-3.6.	
	
1. Imagine	a	car-like	agent	wishes	to	navigate	a	maze	such	as	this	one:	

	
The	agent	is	directional	and	at	all	times	faces	some	direction	d	∈	{N,	S,	E,	W}.	With	a	single	action,	the	
agent	can	either	move	forward	at	an	adjustable	velocity	v,	or	turn.		It	cannot	move	forward	and	turn	at	
the	same	time.	
	
The	turning	actions	are	LEFT	and	RIGHT,	which	change	the	agent’s	direction	by	a	90	degrees	rotation.	
Turning	is	only	permitted	when	the	velocity	is	zero	(and	leaves	it	at	zero).	
	
The	moving	actions	are	MOVE,	MOVE-FASTER	and	MOVE-SLOWER.	MOVE	moves	the	car	in	its	current	
direction	forward	by	the	number	of	squares	equal	to	its	velocity.		MOVE-FASTER	increments	the	velocity	
by	1	and	then	moves	forward	the	number	of	squares	equal	to	its	new	velocity.		MOVE-SLOWER	
decrements	the	velocity	by	1	and	then	moves	forward	the	number	of	squares	equal	to	its	new	velocity.	
	
Any	action	that	would	result	in	crashing	into	a	wall	is	illegal	(meaning	it	is	not	available	as	an	action	from	
the	state	in	question).		Any	action	that	would	reduce	v	below	0	or	above	some	maximum	speed	Vmax	is	
also	illegal.	
	
The	agent’s	goal	is	to	find	a	driving	strategy	that	parks	it	(stationary,	with	v	=	0,	direction	facing	
irrelevant)	on	the	goal	square	G	in	as	few	actions	(time	steps)	as	possible.		Every	action	(turning	90	
degrees,	or	driving	forward	at	the	current	velocity)	takes	1	unit	of	time.	
	
Note	that	this	is	problem	formulation	is	different	from	the	regular	navigation	problem!	
	
All	of	these	questions	pertain	to	a	generic	maze	of	size	m	by	n,	not	specifically	the	maze	above,	which	is	
only	shown	to	illustrate	how	the	problem	is	set	up.	
	

(a) Formulate	what	a	state	looks	like	for	this	problem.		Define	it	using	specific	data	types.	
	

(b) If	the	grid	is	m	by	n,	what	is	the	(maximum)	size	of	the	state	space?	Justify	your	answer.	You	
should	assume	that	all	possible	states	are	reachable	from	the	start	state.	
	

(c) What	is	the	maximum	branching	factor	of	this	problem?	You	may	assume	that	illegal	actions	from	
a	state	are	never	considered.		Briefly	justify	your	answer.	
	

G



(d) The	Manhattan	distance	between	two	points	is	defined	to	be	the	sum	of	the	total	vertical	and	
horizontal	differences	between	the	points.		In	other	words,	if	you	imagine	a	city	laid	out	using	a	
grid	(like	Manhattan),	the	Manhattan	distance	is	the	total	distance	you	would	have	to	walk	to	get	
from	one	intersection	to	another	(because	no	streets	run	diagonally).			
	
For	our	car	driving	problem,	Is	the	Manhattan	distance	from	the	agent’s	location	to	the	goal	
location	an	admissible	heuristic?	Why	or	why	not?	
	

(e) Describe	and	justify	a	non-trivial	admissible	heuristic	for	this	problem	that	is	not	the	Manhattan	
distance	to	the	goal.	
	

(f) If	we	used	an	inadmissible	heuristic	to	solve	this	problem,	could	it	change	the	completeness	of	the	
search?		Why	or	why	not?	
	

(g) If	we	used	an	inadmissible	heuristic	to	solve	this	problem,	could	it	change	the	optimality	of	the	
search?		Why	or	why	not?	
	

2. Assume	you	are	given	a	graph	like	the	one	we	used	in	class	for	A*,	with	vertices	representing	
locations	and	the	edge	weights	representing	travel	time	between	locations.		(That	graph	is	supplied	
for	you	at	the	end	of	this	homework	to	refresh	your	memory.)		The	travelling	salesperson	problem	
asks,	“What	is	the	fastest	route	that	begins	at	a	specific	starting	location,	visits	all	the	other	locations	
in	the	graph	in	any	order,	and	returns	back	to	the	starting	location?”		Suppose	we	want	to	solve	this	
problem	using	A*.	
	
(a)	Formulate	what	a	state	could	be	represented	for	this	problem.		Define	this	representation	using	
specific	data	types.		What	does	the	initial	state	look	like,	and	what	does	a/the	final	state(s)	look	like?		
(If	it	helps	to	use	specific	examples	from	the	in-class	graph,	you	may.)		Hint:	You	will	need	to	
represent/store	more	than	just	the	current	location	of	the	salesperson.			
	
(b)	Suppose	I	define	a	heuristic	for	this	problem	to	be	the	sum	of	all	the	straight-line	distances	from	
the	salesperson	to	all	the	locations	the	salesperson	hasn’t	visited	yet.		Explain	why	this	heuristic	is	not	
admissible.	
	
(c)	Define	an	admissible	heuristic	for	this	problem.	

	
3. Suppose	you	are	solving	a	problem	using	A*	and	you	manage	to	invent	a	perfect	heuristic	function	for	

your	problem,	which	you	call	h*.		In	other	words,	instead	of	being	an	estimate	of	how	far	away	node	n	
is	from	a	goal	state,	h*(n)	tells	you	the	exact	cost	of	the	shortest	path	from	n	to	a	goal	state.		For	
instance,	in	the	navigation	problem	from	class,	where	we	were	trying	to	travel	from	location	I	to	
location	A,	h*(n)	wouldn’t	be	the	straight-line	distance	from	node	n	to	location	A,	it	would	be	the	
length	of	the	true	shortest	path	from	n	to	A,	using	the	edge	weights	in	the	graph	itself.		In	other	words,	
h*(I)	=	10,	because	the	true	shortest	path	is	I-H-D-B-A.	
	
Recall	that	as	a	heuristic	function	gets	better	and	better	(i.e.,	a	better	approximation	of	the	true	
shortest	path	length),	the	A*	algorithm	runs	faster	and	faster	---	this	happens	because	using	heuristic	
that	are	better	estimates	of	the	true	shortest	path	causes	us	to	visit/expand	fewer	frontier	nodes	that	
do	not	fall	along	the	true	shortest	path	from	the	initial	state	to	a	goal	state.		Therefore,	logically,	if	we	
had	access	to	this	perfect	heuristic	function,	h*,	then	the	A*	algorithm	would	run	as	fast	as	possible.			
	
Note	that	one	could	certainly	generate	this	perfect	heuristic	h*	for	any	problem,	simply	by	running	



Dijkstra’s	algorithm	from	the	initial	state	to	all	possible	goal	states	and	storing	the	shortest	path	
length.		But	that’s	clearly	very	inefficient	and	would	remove	the	point	of	using	A*	anyway.	

	
Assume	we	have	access	to	this	theoretical	perfect	heuristic	function	h*.		Normally,	during	the	node	
expansion	step	of	A*,	while	visiting	a	node	n,	we	generate	and	add	all	of	n’s	successor	states	to	the	
frontier	(that	aren’t	already	on	the	explored	list	or	already	exist	in	the	frontier	with	lower	f-costs).		It	
turns	out	that	during	this	step,	if	we	have	access	to	h*,	we	can	figure	out	the	one	single	successor	state	
of	n	that	lies	on	the	shortest	path	from	n	to	a	goal	and	only	add	that	state	to	the	frontier,	skipping	all	
the	others.		Clearly,	this	would	save	us	a	lot	of	time---we	wouldn’t	need	to	bother	putting	states	on	the	
frontier	that	will	never	be	part	of	the	shortest	path.		Describe,	for	a	node	n,	how	to	use	the	h*	
function	to	directly	find	the	successor	state	of	n	that	is	on	the	shortest	path	from	n	to	a	goal	
state.		(Mathematically,	this	is	a	pretty	short	description,	so	be	brief.)	
	

4. Consider	the	following	graph,	where	we	are	trying	to	find	the	shortest	path	from	vertex	A	to	either	F	
or	G	(both	F	and	G	are	goal	states).	

	

	
	

Here	are	four	possible	heuristic	functions	h1(n)	through	h4(n):	
	 A	 B	 C	 D	 F	 G	
h1	 0	 0	 0	 0	 0	 0	
h2	 11	 7	 7	 3	 0	 0	
h3	 13	 9	 7	 1	 0	 0	
h4	 15	 10	 11	 5	 0	 0	

	
(a) Which,	if	any,	of	the	heuristics	are	admissible?	

	
(b) Which,	if	any,	of	the	heuristics	are	consistent?	

	
(c) Run	A*	(by	hand)	using	h3,	showing	the	search	tree	generated,	and	the	frontier	and	explored	lists.		

At	the	end,	please	also	provide	a	list	showing	in	what	order	nodes	were	visited	(this	can	be	done	
by	numbering	your	frontier	nodes	as	you	pop	them	off	the	priority	queue,	or	just	make	a	separate	
list	somewhere	else	on	the	page).			
	
What	is	the	best	path	returned	by	A*?	
	

(d) Recall	that	the	term	best-first	search	refers	to	any	search	algorithm	that	uses	a	heuristic	function	
to	prioritize	the	frontier	by	which	nodes	would	be	best	to	examine	first.		A*	is	an	example	of	an	
algorithm	that	falls	into	this	category.		Consider	a	different	algorithm	that	also	falls	into	this	
category,	called	greedy	best-first	search.		This	algorithm	sorts	the	frontier	by	f(n)	=	h(n),	rather	
than	f(n)	=	g(n)	+	h(n).		Run	greedy	best	first	search	by	hand	using	h3,	following	the	same	
procedure	as	part	(c).			
	
What	is	the	best	path	returned	by	greedy	best-first	search?	



	


