Adversarial Search

Toolbox so far

 Uninformed search
— BFS, DFS, uniform cost search

e Heuristic search Common environmental factors:
static, discrete, fully observable,

— A* L. :
deterministic actions.

Also: single agent, non-episodic.

Kick it up a notch!

 Add a second agent, but
not controlled by us.

* Assume this agent is our adversary.

* Environment (for now)
— Still static
— Still discrete
— Still fully observable (for now)

— Still deterministic (for now)

Games!

* Deterministic, turn-taking, two-player, zero-
sum games of perfect information.

2007

best known is the four-color theorem (9). This
deceptively simple conjecture—that given an

arbitrary map with countries, you need at most
Ch ECkEI'S Is SO|V9d four different colors to guarantee that no two
adjoining countries have the same color—has
Jonathan Schaeffer,* Neil Burch, Yngvi Bjornsson,t Akihiro Kishimoto,} been extremely difficult to prove analytically. In
Martin Miiller, Robert Lake, Paul Lu, Steve Sutphen 1976, a computational proof was demonstrated.

Despite the convincing result, some mathema-
The game of checkers has roughly 500 billion billion possible positions (5 x 10%°). The task of ticians were skeptical, distrusting proofs that had
solving the game, determining the final result in a game with no mistakes made by either player, is not been verified using human-derived theorems.
daunting. Since 1989, almost continuously, dozens of computers have been working on solving Although important components of the checkers

The game of checkers has roughly 500 billion billion possible positions (5 x 10°°). The task of
solving the game, determining the final result in a game with no mistakes made by either player, is
daunting. Since 1989, almost continuously, dozens of computers have been working on solving
checkers, applying state-of-the-art artificial intelligence techniques to the proving process. This
paper announces that checkers is now solved: Perfect play by both sides leads to a draw. This is the
most challenging popular game to be solved to date, roughly one million times as complex as
Connect Four. Artificial intelligence technology has been used to generate strong heuristic-based

game-playing programs, such as Deep Blue for chess. Solving a game takes this to the next level by
replacing the heuristics with perfection.

FDMONTON, ALRERTA, CANADA

DEPARTMENT OF

COMPUTING SCIENCE

Adversarial search

 Still search!
— But another agent will alternate actions with us.

* Main new concept:

— Two players are called MAX and MIN.

— Only works for zero-sum games.
* Strictly competitive (no cooperation).

 What is good for me is equally bad for my opponent (in
regards to winning and losing).

— Most “normal” 2-player games are zero-sum.

Most all of our concepts from state-space search
transfer here.

Initial state

PLAYER(s): Defines who makes the next move at a
state.

ACTIONS(s): Returns the set of legal moves in a
state.

RESULT(s, a): Returns what state you go into
(transition model)

TERMINAL-TEST(s): Returns true if s is a terminal
state.

UTILITY(s, p): Numeric value of a terminal state s
for player p.

Game Tree

MAX (X)
X X Tx
MIN (O) X X X
x|o x| [ol [xI
MAX (X) o
x[olx] [xo X0
MIN (O) X X
xlo/ x| |x/lo[x |x/o|x e
TERMINAL | [0 X| [0/0[X X
o X x|o! [x/olo
Utility 1 0 +1

MAX

MIN

Minimax algorithm

* Select the best move for you, assuming your
opponent is selecting the best move for
themselves.

 Works like DFS.

Minimax algorithm

minimax(s) =
utility(s) if sis terminal
MaXg in actions(s) MiNimMax(result(s, a)) if player(s)=MAX
MiNg in actions(s) MiNiMax(result(s, a)) if player(s)=MIN

result(s, a) means the new state generated
by taking action a in states.

Properties of minimax

Complete?
— Yes (assuming tree is finite)

Optimal?

— Yes (assuming opponentis also optimal)
Time complexity: O(b™)

Space complexity: O(bm) (like DFS)

But for chess, b = 35, m = 100, so this time is
completely infeasible!

MAX -\

MIN

V4 V/ Y/
A N A A A o b A A
3 12 3 2 4 6 14 5 2
minimax(s) =
utility(s) if s is terminal
MaX iy actions(s) MiNiMax(result(s, a)) if player(s)=MAX

MiN i, actions(s) MiNimax(result(s, a)) if player(s)=MIN

Problem: minimax takes too long.

Solution: improve algorithm to ignore parts of
the tree that will definitely not be used
(assuming both players play optimally).

New algorithm: minimax with alpha-beta
pruning.
ldea: for each node, keep track of the range of

possible values that minimax could produce
for that node.

Alpha-beta pruning

 Each node in the game tree needs two extra
variables, called alpha and beta.

* Alpha and beta are inherited from parent nodes.

— alpha = highest-value choice we’ve found so far (best
move for MAX)

— beta = lowest-value choice we’ve found so far (best
choice for MIN)

e If at a MAX node, we see a child node that has a
value >= than beta, short-circuit.

* If at a MIN node, we see a child node that has a
value <= than alpha, short-circuit.

* The results of alpha-beta depend on the order

in which moves are considered among the
children of a node.

* |f possible, consider better moves first!

Real-world use of alpha-beta

* (Regular) minimax is normally run as a
preprocessing step to find the optimal move

from every possible situation.

* Minimax with alpha-beta can be run as a
preprocessing step, but might have to re-run
during play if a non-optimal move is chosen.

* Save states somewhere so if we re-encounter
them, we don't have to recalculate everything.

Real-world use of alpha-beta

e States get repeated in the game tree because
of transpositions.

* When you discover a best move in minimax or
alpha-beta, save it in a lookup table (probably
a hash table).

— Called a transposition table.

Real-world use of alpha-beta

* In the real-world, alpha-beta does not "pre-
generate" the game tree.
— The whole point of alpha-beta is to not have to
generate all the nodes.
* The DFS part of minimax/alpha-beta is what
generates the tree.

