
Adversarial	Search



Toolbox	so	far

• Uninformed	search
– BFS,	DFS,	uniform	cost	search

• Heuristic	search
– A*

Common	environmental	factors:	
static,	discrete,	fully	observable,	
deterministic	actions.
Also:	single	agent,	non-episodic.



Kick	it	up	a	notch!

• Add	a	second	agent,	but	
not	controlled	by	us.

• Assume	this	agent	is	our	adversary.
• Environment	(for	now)
– Still	static
– Still	discrete
– Still	fully	observable	(for	now)
– Still	deterministic	(for	now)



Games!

• Deterministic,	turn-taking,	 two-player,	zero-
sum	games	of	perfect	information.



2007



Adversarial	search

• Still	search!	
– But	another	agent	will	alternate	actions	with	us.

• Main	new	concept:
– Two	players	are	called	MAX	and	MIN.
– Only	works	for	zero-sum	games.
• Strictly	competitive	(no	cooperation).
• What	is	good	for	me	is	equally	bad	for	my	opponent	(in	
regards	to	winning	and	losing).

–Most	“normal”	2-player	games	are	zero-sum.



• Most	all	of	our	concepts	from	state-space	search	
transfer	here.

• Initial	state
• PLAYER(s):	Defines	who	makes	the	next	move	at	a	
state.

• ACTIONS(s):	Returns	the	set	of	legal	moves	in	a	
state.

• RESULT(s,	a):	Returns	what	state	you	go	into	
(transition	model)

• TERMINAL-TEST(s):	Returns	true	if	s	is	a	terminal	
state.

• UTILITY(s,	p):	Numeric	value	of	a	terminal	state	s	
for	player	p.



Game	Tree



3											12								8											2								4										6										14							5									2

MAX

MIN



Minimax algorithm

• Select	the	best	move	for	you,	assuming	your	
opponent	is	selecting	the	best	move	for	
themselves.

• Works	like	DFS.



Minimax algorithm

minimax(s)	=	
utility(s) if	s	is	terminal
maxa in	actions(s) minimax(result(s,	a))						 if	player(s)=MAX
mina in	actions(s)minimax(result(s,	a)) if	player(s)=MIN

result(s,	a)	means	the	new	state	generated	
by	taking	action	a in	state	s.



Properties	of	minimax

• Complete?
– Yes	(assuming	tree	is	finite)

• Optimal?
– Yes	(assuming	opponent	is	also	optimal)

• Time	complexity:	O(bm)
• Space	complexity:	O(bm)				(like	DFS)
• But	for	chess,	b	≈	35,	m	≈	100,	so	this	time	is	
completely	infeasible!



3											12								8											2								4										6										14							5									2

MAX

MIN





• Problem:	minimax takes	too	long.
• Solution:	improve	algorithm	to	ignore	parts	of	
the	tree	that	will	definitely	not	be	used	
(assuming	both	players	play	optimally).

• New	algorithm:	minimax with	alpha-beta	
pruning.

• Idea:	for	each	node,	keep	track	of	the	range	of	
possible	values	that	minimax could	produce	
for	that	node.



Alpha-beta	pruning
• Each	node	in	the	game	tree	needs	two	extra	
variables,	called	alpha	and	beta.

• Alpha	and	beta	are	inherited	from	parent	nodes.
– alpha	=	highest-value	choice	we’ve	found	so	far	(best	
move	for	MAX)

– beta	=	lowest-value	choice	we’ve	found	so	far	(best	
choice	for	MIN)

• If	at	a	MAX	node,	we	see	a	child	node	that	has	a	
value	>=	than	beta,	short-circuit.

• If	at	a	MIN	node,	we	see	a	child	node	that	has	a	
value	<=	than	alpha,	short-circuit.



• The	results	of	alpha-beta	depend	on	the	order	
in	which	moves	are	considered	among	the	
children	of	a	node.

• If	possible,	consider	better	moves	first!



Real-world	use	of	alpha-beta

• (Regular)	minimax is	normally	run	as	a	
preprocessing	step	to	find	the	optimal	move	
from	every	possible	situation.

• Minimax with	alpha-beta	can	be	run	as	a	
preprocessing	step,	but	might	have	to	re-run	
during	play	if	a	non-optimal	move	is	chosen.

• Save	states	somewhere	so	if	we	re-encounter	
them,	we	don't	have	to	recalculate	everything.



Real-world	use	of	alpha-beta

• States	get	repeated	in	the	game	tree	because	
of	transpositions.

• When	you	discover	a	best	move	in	minimax or	
alpha-beta,	save	it	in	a	lookup	table	(probably	
a	hash	table).
– Called	a	transposition	table.



Real-world	use	of	alpha-beta

• In	the	real-world,	alpha-beta	does	not	"pre-
generate" the	game	tree.
– The	whole	point	of	alpha-beta	is	to	not	have	to	
generate	all	the	nodes.

• The	DFS	part	of	minimax/alpha-beta	 is	what	
generates	the	tree.


