
State	Space	Search



Overview

• Problem-solving	as	search

• How	to	formulate	an	AI	problem	as	search.

• Uninformed	search	methods



What	is	search?



Environmental	factors	needed

• Static— The	world	does	not	change	on	its	
own,	and	our	actions	don't	change	it.

• Discrete— A	finite	number	of	individual	
states	exist	rather	than	a	continuous	space	of	
options.

• Observable — States	can	be	determined	by	
observations.

• Deterministic — Action	have	certain	
outcomes.



• The	environment is	all	the	information	about	the	
world	that	remains	constant	while	we	are	solving	
the	problem.

• A	state is	a	set	of	properties	that	define	the	
current	conditions	of	the	world	our	agent	is	in.
– Think	of	this	as	a	snapshot of	the	world	at	a	given	
point	in	time.

– The	entire	set	of	possible	states	is	called	the	state	
space.

• The	initial	state	is	the	state	the	agent	begins	in.
• A	goal	state	is	a	state	where	the	agent	may	end	
the	search.

• An	agent	may	take	different	actions that	will	lead	
the	agent	to	new	states.



Formulating	problems	as	search

• Canonical	problem:	route-finding

• Sliding	block	puzzle	(almost	any	kind	of	game	

or	puzzle	can	be	formulated	this	way).

• Roomba	cleaning

• Solitaire

• What	else?



Formulating	problems	as	search

• Define:

–What	do	my	states	look	like?

–What	is	my	initial	state?

–What	are	my	goal	state(s)?

–What	is	my	cost	function?		

• How	do	I	know	how	"good"	a	state	or	action	is?
• Usually	desirous	to	minimize,	rather	than	maximize.

• Usually	phrased	as	a	function	of	the	path	from	the	

initial	state	to	a	goal	state.



Formulating	problems	as	search

• Solution:

– A	path between	the	initial	state	and	a	goal	state.

– Quality is	measured	by	path	cost.

– Optimal	solutions	have	the	lowest	cost	of	any	
possible	path.



• State	space	search	gives	us	graph	searching	

algorithms.

• Are	we	searching	a	tree or	a	(true)	graph?





• There	are	two	simultaneous	graph-ish

structures	used	in	search:

– (1)	Tree	or	graph	of	underlying	state	space.
– (2)	Tree	maintaining	the	record	of	the	current	

search	in	progress	(the	search	tree).
• (1)	does	not	depend	on	the	current	search	

being	run.

• (1)	is	sometimes	not	even	stored	in	memory	

(too	big!)

• (2)	always	depends	on	the	current	search,	and	

is	always	stored	in	memory.



Search	tree

• A	node	n	of	the	search	tree	stores:

– a	state	(of	the	state	space)
– a	parent	pointer	to	a	node	(usually)
– the	action	that	got	you	from	the	parent	to	this	

node	(sometimes)

– the	path	cost	g(n):	cost	of	the	path	so	far	from	the	

initial	state	to	n.



Search	tree

• Frontier:	a	data	structure	storing	the	collection	of	
nodes	that	are	available	to	be	examined	next	in	
the	algorithm.

– Often	represented	as	a	stack,	queue,	or	priority	
queue.

• Explored	set:	stores	the	collection	of	states	we	
have	already	examined	(and	therefore	don’t	need	
to	look	at	again).	

– Often	stored	using	a	data	structure	that	enables	quick	
look-up	for	membership	tests.



Uninformed	search	methods

• These	methods	have	no	information	about	
which	nodes	are	on	promising	paths	to	a	
solution.

• Also	called:	blind	search
• Question	— What	would	have	to	be	true	for	
our	agent	to	need	uninformed	search?

– No	knowledge	of	goal	location;	or
– No	knowledge	of	current	location	or	direction
(e.g.,	no	GPS,	inertial	navigation,	or	compass)



How	do	you	evaluate	a	search	

strategy?

• Completeness —Does	it	always	find	a	

solution	if	one	exists?

• Optimality — Does	it	find	the	best	solution?

• Time	complexity
• Space	complexity



Frontier	=	stack,	

queue,	or	priority	

queue.

Explored	set	=	hash	

table.



Search	strategies

• Breadth-first	search

– Variant	— Uniform-cost	search

• Depth-first	search

• Depth-limited	search

• Iterative	deepening	depth-first	search



Breadth-first	search

• Choose	shallowest	node	for	expansion.

• Data	structure	for	frontier?

– Queue	(regular)
• Suppose	we	come	upon	the	same	state	twice.		

Do	we	re-add	to	the	frontier?

– No.
• Complete?		Optimal?		Time?		Space?



Uniform-cost	search

• Choose	node	with	lowest	path	cost	g(n)	for	

expansion.

• Data	structure	for	frontier?

– Priority	queue
• Suppose	we	come	upon	the	same	state	twice.		

Do	we	re-add	to	the	frontier?

– Yes.		(And	remove	old	node	from	frontier.)

• Complete?		Optimal?		Time?		Space?





Depth-first	search

• Choose	deepest	node	to	expand.

• Data	structure	for	frontier?

– Stack	(or	just	use	recursion)
• Suppose	we	come	upon	the	same	state	twice.		

Do	we	re-add	to	the	frontier?

– Yes.		(And	remove	old	node	from	frontier.)

• Complete?		Optimal?		Time?		Space?



Iterative	deepening	DFS

• Suppose	we	have	a	DFS	algorithm	that	cuts	off	

at	some	maximum	depth.

• Run	this	algorithm	with	max-depth=1.

– Then	2,	then	3,	…
• Complete?		Optimal?		Time?		Space?



Best-first	search

(class	of	algorithms)

• Same	algorithm	as	uniform-cost	search.

• Uses	a	different	evaluation	function	to	sort	

the	priority	queue.

• Need	a	heuristic	function,	h(n).

– h(n)	=	Estimate	of	lowest-cost	path	from	node	n	to	

a	goal	state.



A*	Algorithm

• Sort	priority	queue	by	a	function	f(n),	which	

should	be	the	estimated lowest-cost	path	

through	node	n.

• What	is	f?

– f(n)	=	g(n)	+	h(n)



Heuristics

• A	heuristic	function	h(n)	is	admissible if	it	

never	over-estimates	the	true	lowest	cost	to	a	

goal	state	from	node	n.

• Equivalent:	h(n)	must	always	be	less	than	or	

equal	to	the	true	cost	from	node	n	to	a	goal.

• What	happens	if	we	just	set	h(n)	=	0	for	all	n?



Heuristics
• A	heuristic	function	h(n)	is	consistent	if	values	of	
h(n)	along	any	path	in	the	search	tree	are	non-
decreasing.

• Equivalent:	given	a	node	n,	and	an	action	which	
takes	you	from	n	to	node	n':

– h(n)	<=	cost(n,	a,	n')	+	h(n')

– h(n)	– h(n')	<=	cost(n,	a,	n')

• Consistency	implies	admissibility	(but	not	the	
other	way	around).

• Difficult	to	invent	heuristics	that	are	admissible	
but	not	consistent.



A*	Algorithm

• A*	is	optimal	if	h(n)	is	consistent	(and	

therefore	admissible).

– Tree	search	version	of	A*	only	needs	an	
admissible	heuristic,	but	A*	is	usually	used	for	

searching	graphs.



Greedy	best-first	search

• Use	just	h(n)	to	sort	priority	queue.

• Complete?

• Optimal?


