

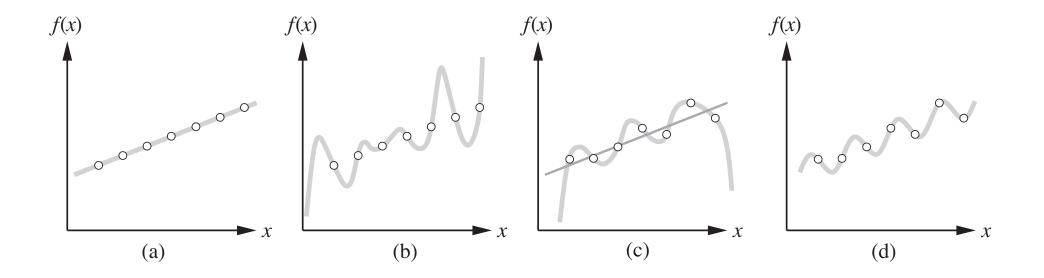
Review – Machine Learning

- Three forms:
- Supervised learning
 - The agent is given some input-output pairs and it learns a function that maps the input to the output.
 - Example: training a naïve Bayes classifier.
- Unsupervised learning
 - The agent learns patterns in the input even though no explicit output or feedback is given.
 - Example: clustering
- Reinforcement learning
 - The agent is given feedback (rewards) during the steps of a task and the agent learns a function from states to predicted rewards.

Supervised learning

- Given a training set of N example input-output pairs:
 - $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
- Each y is generated by an unknown function y = f(x).
- Goal: discover a function h that approximates the true function f.
- h is called a *hypothesis*.
- Machine learning algorithms conduct searches for the "best" f.
- We can measure the accuracy of a hypothesis on a test set of examples that are distinct from the training set.
- A hypothesis *generalizes well* if it correctly predicts examples from the test set (even though it has never seen them before).

Supervised learning

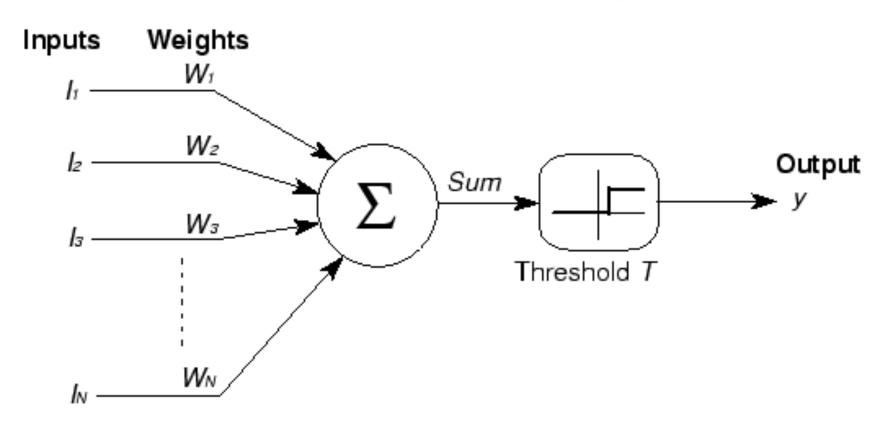


Supervised learning

- Poor generalization is sometimes caused by overfitting: our hypothesis has learned the training set very well, but it has poor accuracy on the test set.
 - Analogous to "memorizing" the training set.
- When the output y is one of a finite set of values (e.g., sunny/cloudy/rainy or true/false), the learning problem is called *classification*.
- When the output is a number, the problem is called *regression*.
 - Yes, linear regression is a machine learning algorithm!

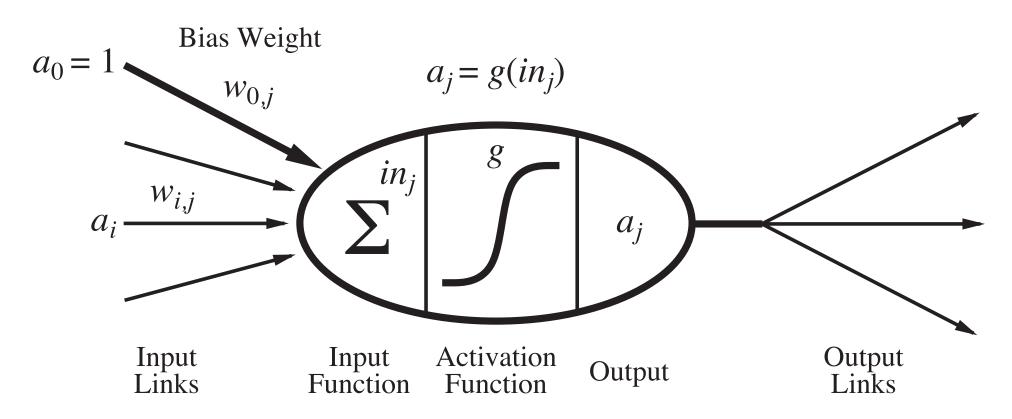
McCullough-Pitts neuron

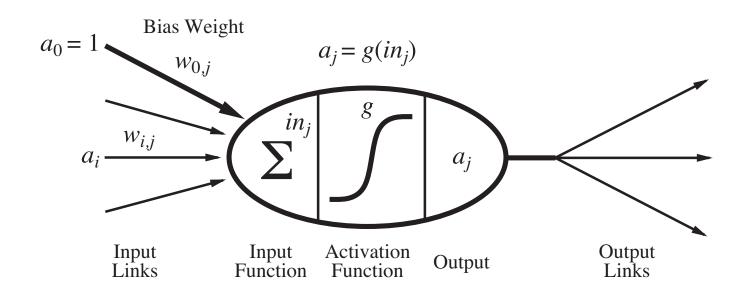
• 1943: Warren McCullough and Walter Pitts, two electrical engineers, develop the first model of an *artificial neuron*, called threshold logical units.



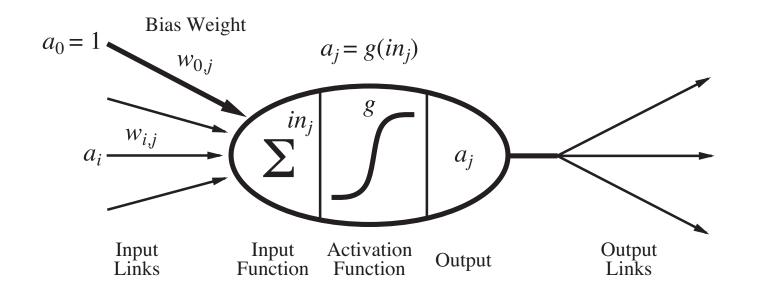
Perceptron

• 1958: Frank Rosenblatt refined the McCullough-Pitts neuron into the *perceptron*.





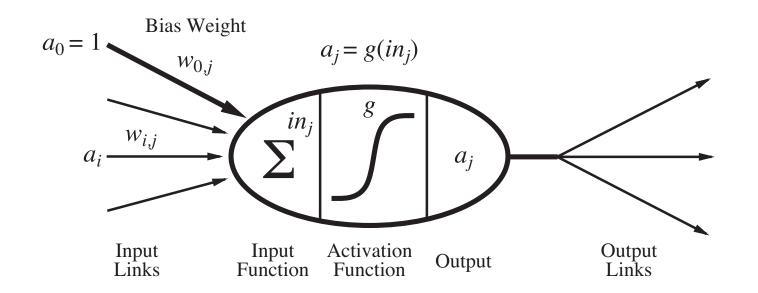
- NNs are composed of nodes or units connected by directed links (a graph structure).
- Each unit receives a collection of numeral inputs $(a_0, a_1, ...)$ and produces a numeral output (a_i) .
- A link from unit i to unit j has a weight w_{ij} associated with it.
- Each unit has a dummy input (a_0) that is always set to 1.



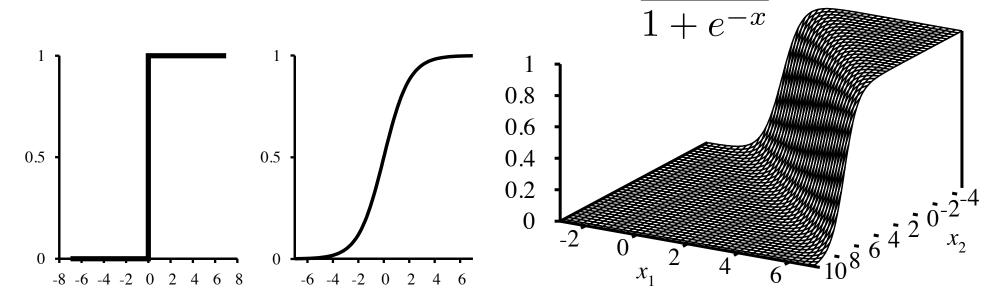
• Each unit j first computes a weighted sum of its inputs: \ensuremath{n}

$$in_j = \sum_{i=0}^{\infty} w_{i,j} \cdot a_j$$

• Then it applies an activation function g to this sum to produce the output: $a_j = g(in_j)$



• The function g is typically either a hard threshold function or the logistic function: 1

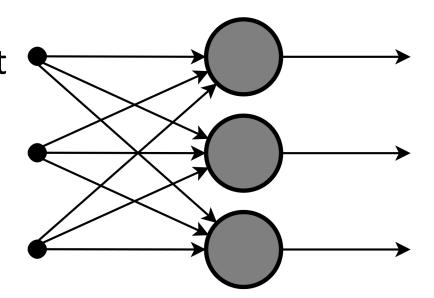


Neural networks

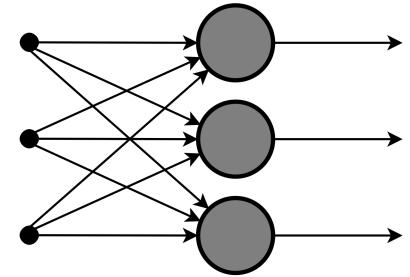
- Two basic types of networks.
 - Feed-forward: Links are only in one direction (DAG).
 - Recurrent: Allows outputs to feed back into inputs.
 - System may reach a steady state or may exhibit oscillations or chaotic behavior.
- Feed-forward networks are usually arranged in layers, where each layer only receives input from the previous layer.
 - Single layer all inputs connected directly to outputs
 - Multi-layer one or more *hidden layers* of units in between input and output.

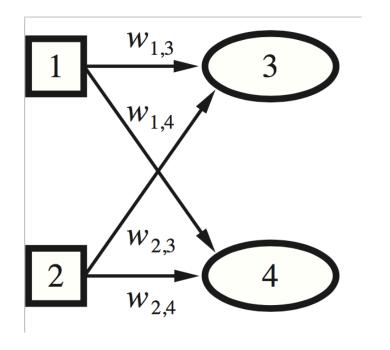
• One input layer (which is just the raw inputs).

- One output layer (of perceptron units).
- Example.



- One input layer (which is just the raw inputs).
- One output layer (of perceptron units).
- Let's design a network to add two bits together.
- Needs two inputs (x_1, x_2) , and two outputs (y_3, y_4) .





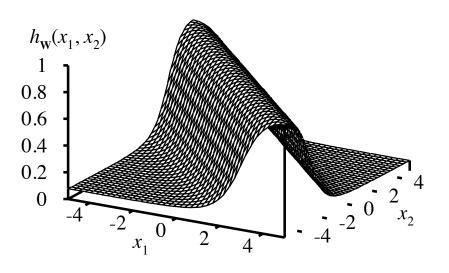
- There is an algorithm to change the weights of a single-layer network to make the network learn any function...
- Initialize starting weights randomly
- Do until you want to stop (typically when accuracy is good enough or weights stop changing):
 - for each training example (x, y):
 - use NN to get prediction of h(x)
 - if h(x) differs from y, update all weights:
 - w[i] = w[i] + (y h(x)) * x[i]
 - compute accuracy over entire training data = (# predicted correctly)/(# of training examples)

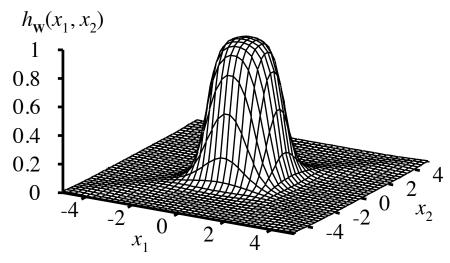
- There is an algorithm to change the weights of a single-layer network to make the network learn any function...
- as long as it is linearly-separable!

Multi-layer feed forward networks

- McCullough, Pitts, and Rosenblatt were all aware of the linear separability problem.
- If we add another layer of units between the input and output layers, we can learn any function!
- http://playground.tensorflow.org/

Multi-layer feed forward networks





Multi-layer feed forward networks

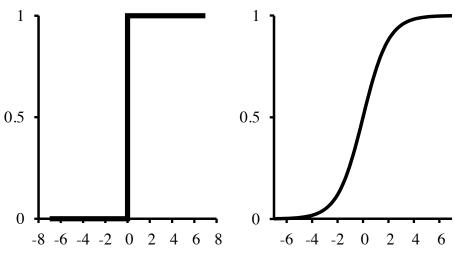
- Learning is done through the backpropagation algorithm (backprop).
- Derived through calculus (we will skip).

- Initialize starting weights randomly
- Do until you want to stop (typically when accuracy is good enough or weights stop changing):
 - for each training example (x, y):
 - use NN to get prediction of h(x)
 - if h(x) differs from y, update all weights:
 - w[i] = w[i] + (y h(x)) * x[i]
 - compute accuracy over entire training data = (# predicted correctly)/(# of training examples)

- In the perceptron learning algorithm, where did the update equation come from?
- w[i] = w[i] + (y h(x)) * x[i]
- Recall h(x) = w[0] * x[0] + w[1] * x[1] + ...
- If y = 1, but h(x) = 0, then h(x) is too small.
 - How do we increase h(x)?
 - Increase the weights w[0], w[1], ...
 - By how much?
 - Proportionally to their corresponding input x[i] value.

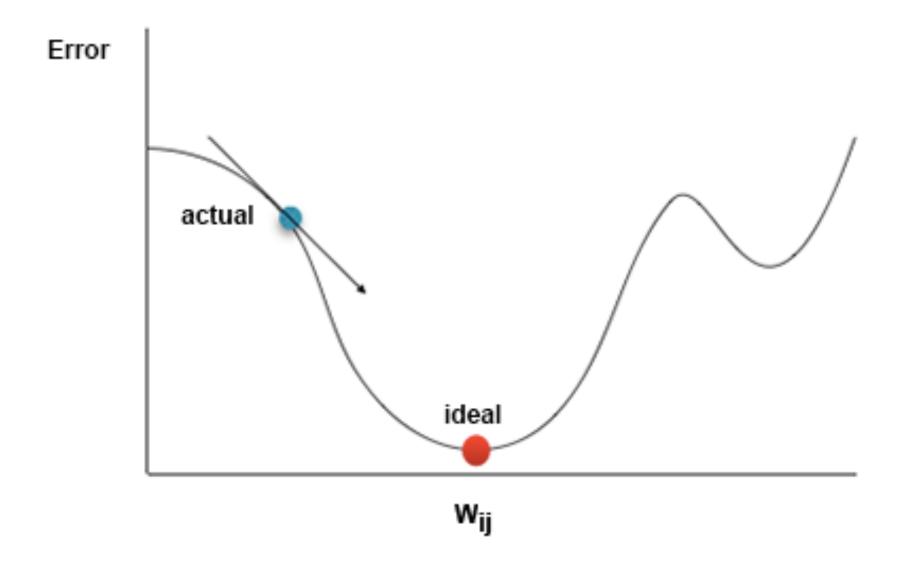
- Learning with a hard threshold function is rather erratic because of the binary nature of its output.
 - Threshold function is not differentiable (so what?)
 - Always outputs 0 or 1; doesn't give us gradations of predictions.

• Let's switch to the logistic/sigmoid function as our activation function.



- How does the update equation change when our activation function is the logistic function rather than a hard threshold?
- Let's look at what errors look like under the hard threshold function vs the logistic function.

Gradient descent



- Assuming a NN doesn't classify everything correctly, how do we measure how good or bad it is doing?
- Error functions:
 - L1-norm loss: measure |y h(x)|
 - L2-norm loss: measure $(y h(x))^2$
 - Clearly both loss functions penalize big differences more than small differences, but L1 penalizes proportionally, and L2 penalizes more harshly than L1

```
repeat
    for each weight w_{i,j} in network do
        w_{i,j} \leftarrow a small random number
    for each example (x, y) in examples do
         /* Propagate the inputs forward to compute the outputs */
        for each node i in the input layer do
             a_i \leftarrow x_i
        for \ell = 2 to L do
             for each node j in layer \ell do
                 in_j \leftarrow \sum_i w_{i,j} a_i
                 a_i \leftarrow g(in_i)
         /* Propagate deltas backward from output layer to input layer */
        for each node j in the output layer do
             \Delta[j] \leftarrow g'(in_j) \times (y_j - a_j)
        for \ell = L - 1 to 1 do
             for each node i in layer \ell do
                 \Delta[i] \leftarrow g'(in_i) \sum_i w_{i,j} \Delta[j]
         /* Update every weight in network using deltas */
        for each weight w_{i,j} in network do
            w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta[j]
until some stopping criterion is satisfied
return network
```

Backprop highlights

```
repeat
    for each weight w_{i,j} in network do
        w_{i,j} \leftarrow a small random number
    for each example (x, y) in examples do
         /* Propagate the inputs forward to compute the outputs */
        for each node i in the input layer do
             a_i \leftarrow x_i
        for \ell = 2 to L do
             for each node j in layer \ell do
                 in_j \leftarrow \sum_i w_{i,j} a_i
                 a_i \leftarrow q(in_i)
```

Backprop highlights

 $w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta[j]$

/* Propagate deltas backward from output layer to input layer */
for each node j in the output layer do $\Delta[j] \leftarrow g'(in_j) \times (y_j - a_j)$ for $\ell = L - 1$ to 1 do
for each node i in layer ℓ do $\Delta[i] \leftarrow g'(in_i) \sum_j w_{i,j} \Delta[j]$ /* Update every weight in network using deltas */
for each weight $w_{i,j}$ in network do

Compare

• w[i] = w[i] +
$$(y - h(x))$$
 * x[i]

$$\Delta[j] \leftarrow g'(in_j) \times (y_j - a_j)$$

$$\Delta[i] \leftarrow g'(in_i) \sum_j w_{i,j} \Delta[j]$$

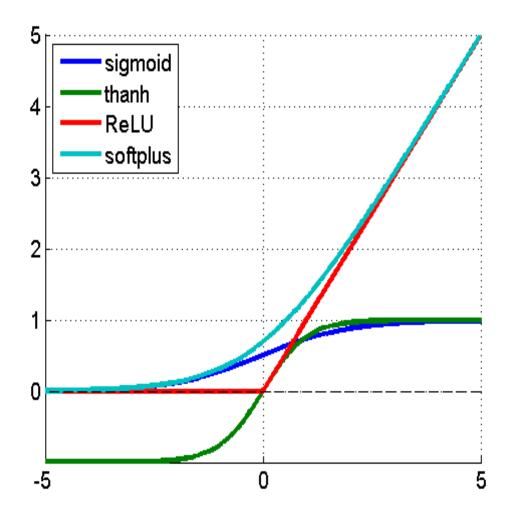
$$w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta[j]$$

- 1943 McCullough-Pitts neuron (can't be trained)
- 1958 Rosenblatt's perceptron (can be trained)
- 1969 Minsky and Papert publish *Perceptrons*, which explains the limits of single-layer NNs.
 - Ushers in first "Al Winter"
- 1982 Backprop algorithm for NNs is published.
 - Was known in the 60s! Al Winter eliminated a lot of Al funding and people were discouraged from working on Al projects.
- 1980s NNs rise again!
- 1989 NNs are "universal approximators."

- 1989 Convolutional NN used to do handwritten digit recognition for ZIP codes. (Yann LeCun)
- 1990s NNs start to be seen as "painfully slow."
 Takes a long time to train them. At the same time, people start making more and more modifications to make NNs predict things better adding more layers, making them recurrent etc.
- Mid 90s 2nd Al Winter occurs when everything breaks down and the community loses faith in NNs (too slow, too hard to train with backprop, don't work well, nobody understands them anyway).
 - Move to other models, especially probabilistic.

- Winter continues through early 2000s, though some people continue working on NNs.
- 2006 paper: "A fast learning algorithm for deep belief nets"
 - Key idea don't initialize weights randomly. Start off with a round of unsupervised learning to find reasonable initial values for the weights, then finish with regular supervised learning.
- 2nd key idea pure computational power of GPUs.
 - Massively parallel! 70x faster than training on CPUs.
- 3rd key idea huge data sets.

 2010 – Turns out the activation function used makes a huge difference on training time and performance.



Lessons

- Our labeled datasets were thousands of times too small.
- Our computers were millions of times too slow.
- We initialized the weights in a stupid way.
- We used the wrong type of non-linearity.