Statistical Inference

Toolbox so far

- Uninformed search
- BFS, DFS, Dijkstra's algorithm (Uniform-cost search)
- Heuristic search
- A*, greedy best-first search
- Probability and Bayes nets
- Exact inference algorithm, approximate inference algorithms

Bayesian networks (Bayes nets)

- Specify a full joint probability distribution.
- Uses conditional and marginal independences to represent information compactly.
- Example of a probabilistic model.
- All probability questions have a unique right answer.
- We can use the exact inference algorithm for Bayes nets to find it.

Real world

- Real world situations are often missing a model.
- We only have a small handful of observations about the world and we aren't 100\% sure about how things relate to each other.
- How can we make probability estimates now?

Statistical inference

- Statistical inference lets us make probability estimations from observations about the way the world works, even if those observations don't tell the full story.
- How likely is this email spam?
- What is the probability it will rain tomorrow?
- If I visit a certain house when trick-or-treating, what is the chance I'll get a Snickers bar?

Types of inference

- Hypothesis testing:
- Given two or more hypotheses (events), decide which one is more likely to be true based on some data.
- Example: Is this email spam or not spam?
- Parameter inference:
- Given a model that is missing some probabilities, estimate those probabilities from data.
- Example: Estimate bias of a coin from flips.

Hypothesis testing

- Let D be the event that we have observed some data.
- Ex: D = received an email containing "cash" and "viagra"
- Let H_{1}, \ldots, H_{k} be disjoint, exhaustive events representing hypotheses to choose between.
- Ex: $\mathrm{H}_{1}=$ this email is spam, $\mathrm{H}_{2}=$ it's not spam.
- How do we use D to decide which H is most likely?

Maximum likelihood

- Suppose we know or can estimate the probability $P\left(D \mid H_{i}\right)$ for each H_{i}.
- The maximum likelihood (ML) hypothesis is:

$$
H^{M L}=\arg \max _{i} P\left(D \mid H_{i}\right)
$$

- How to use it: compute $P\left(D \mid H_{i}\right)$ for each hypothesis and select the one with the greatest value.
- Two of my friends, Alice and Bob, bring cookies to the office!
- Alice's has baked an equal number of both chocolate chip and oatmeal raisin cookies.
- Bob's has baked chocolate chip and oatmeal raisin and as well, but twice as many oatmeal raisin as chocolate chip.
- I ask my friend to get me a cookie; they come back with a chocolate chip one.
- Is my cookie more likely to have been baked by Alice or Bob?

- I know that when my parents send mea check, there is an 98\% chance that they will send it in a yellow envelope.
- I also know that when my dentist sends me a bill, there is a 5% chance that she will send it in a yellow envelope.
- Suppose a yellow envelope arrives on my doorstep.
- What is the maximum likelihood hypothesis regarding the sender?

Why ML sometimes is bad

- Suppose I tell you that there is a 3% chance that my any given envelope will be from my parents and a 97\% chance that any given envelope will be from my dentist. Does it still seem likely that the envelope contains a check from my parents?

Bayesian reasoning

- Rather than compute $P\left(D \mid H_{i}\right)$, let's compute $P\left(H_{i} \mid D\right)$.
- What is the posterior probability of H_{i} given D?

$$
P\left(H_{i} \mid D\right)=\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)}=\alpha P\left(D \mid H_{i}\right) P\left(H_{i}\right)
$$

MAP hypothesis

- Maximum a posteriori (MAP) hypothesis is the H_{i} that maximizes the posterior probability:

$$
\begin{aligned}
& H^{M A P}=\operatorname{argmax}_{i} P\left(H_{i} \mid D\right) \\
& H^{M A P}=\operatorname{argmax}_{i} \frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)} \\
& H^{M A P}=\operatorname{argmax}_{i} P\left(D \mid H_{i}\right) P\left(H_{i}\right)
\end{aligned}
$$

ML vs MAP

$$
\begin{aligned}
& H^{M L}=\arg \max _{i} P\left(D \mid H_{i}\right) \\
& H^{M A P}=\operatorname{argmax}_{i} P\left(D \mid H_{i}\right) P\left(H_{i}\right)
\end{aligned}
$$

- The MAP hypothesis takes the prior probability of each hypothesis into account, ML does not.
- Two of my friends, Alice and Bob, bring cookies to the office!
- Alice's has baked an equal number of both chocolate chip and oatmeal raisin cookies.
- Bob's has baked chocolate chip and oatmeal raisin and as well, but twice as many oatmeal raisin as chocolate chip.
- I ask my friend to get me a cookie. Suppose I know that my friend picks Alice's cookies 90\% of the time. My friend comes back with a chocolate chip one.
- Is my cookie more likely to have been baked by Alice or Bob?
- I know that when my parents send me a check, there is an 98% chance that they will send it in a yellow envelope.
- I know that when my dentist sends me a bill, there is a 5% chance that she will send it in a yellow envelope.
- Unfortunately, I also know that there is a only a 3% chance that any given envelope will be from my parents, while there is a is a 97% chance that any given envelope will be from my dentist.
- Suppose a yellow envelope arrives on my doorstep. What is the MAP hypothesis regarding the sender?
- There are 3 robots.
- Robot 1 will hand you a snack drawn at random from 2 doughnuts and 7 carrots.
- Robot 2 will hand you a snack drawn at random from 4 apples and 3 carrots.
- Robot 3 will hand you a snack drawn at random from 7 burgers and 7 carrots.
- Suppose your friend goes up to a robot (you don't see this happen) and is given a carrot. Is it more likely that your friend approached robot 1 or 3 ?
- What if the prior probability of your friend approaching robots 1, 2, and 3 are 20\%, 40\%, and 40\%, respectively?

ML vs MAP

$$
\begin{aligned}
& H^{M L}=\arg \max _{i} P\left(D \mid H_{i}\right) \\
& H^{M A P}=\operatorname{argmax}_{i} P\left(D \mid H_{i}\right) P\left(H_{i}\right)
\end{aligned}
$$

- When are the two hypothesis predictions the same?

Probability vs hypothesis

- Sometimes you only care about which hypothesis is more likely, and sometimes you need the actual probability.

$$
\begin{aligned}
P\left(H_{i} \mid D\right) & =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)} \\
& =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D, H_{j}\right)} \\
& =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D \mid H_{j}\right) P\left(H_{j}\right)}
\end{aligned}
$$

Probability vs hypothesis

- In the robot problem, what is $\mathrm{P}(\mathrm{R} 3 \mid \mathrm{C})$?

$$
\begin{aligned}
& P\left(R_{3} \mid C\right)=\frac{P\left(C \mid R_{3}\right) P\left(R_{3}\right)}{P(C)} \\
& P\left(R_{3} \mid C\right)=\frac{P\left(C \mid R_{3}\right) P\left(R_{3}\right)}{\sum_{i=1}^{3} P\left(C, R_{i}\right)} \\
& P\left(R_{3} \mid C\right)=\frac{P\left(C \mid R_{3}\right) P\left(R_{3}\right)}{\sum_{i=1}^{3} P\left(C \mid R_{i}\right) P\left(R_{i}\right)}
\end{aligned}
$$

$$
=(7 / 9 * 2 / 10) /(7 / 9 * 2 / 10+3 / 7 * 4 / 10+1 / 2 * 4 / 10)=\sim 0.2952
$$

