
Statistical	Inference



Toolbox	so	far

• Uninformed	search
– BFS,	DFS,	Dijkstra’s	algorithm	(Uniform-cost	 search)

• Heuristic	search
– A*,	greedy	best-first	search

• Probability	and	Bayes	nets
– Exact	inference	algorithm,	approximate	inference	
algorithms



Bayesian	networks
(Bayes	nets)

• Specify	a	full	joint	probability	distribution.
– Uses	conditional	and	marginal	independences	 to	
represent	 information	compactly.

– Example	of	a	probabilistic	model.

• All	probability	questions	have	a	unique	right	
answer.
– We	can	use	the	exact	inference	 algorithm	for	
Bayes	nets	to	find	it.



Real	world

• Real	world	situations	are	often	missing	a	
model.

• We	only	have	a	small	handful	of	observations	
about	the	world	and	we	aren't	100%	sure	
about	how	things	relate	to	each	other.

• How	can	we	make	probability	estimates	now?



Statistical	inference

• Statistical	inference	lets	us	make	probability	
estimations	from	observations	about	the	way	
the	world	works,	even	if	those	observations	
don't	tell	the	full	story.
– How	likely	is	this	email	spam?
– What	is	the	probability	 it	will	rain	tomorrow?
– If	I	visit	a	certain	house	when	trick-or-treating,	
what	is	the	chance	 I'll	get	a	Snickers	 bar?



Types	of	inference

• Hypothesis	testing:
– Given	two	or	more	hypotheses	 (events),	decide	
which	one	is	more	likely	to	be	true	based	on	some	
data.

– Example:	 Is	this	email	spam	or	not spam?

• Parameter	inference:
– Given	a	model	that	is	missing	some	probabilities,	
estimate	those	probabilities	from	data.

– Example:	Estimate	bias	of	a	coin	from	flips.



Hypothesis	testing

• Let	D	be	the	event	that	we	have	observed	
some	data.
– Ex:	D	=	received	an	email	containing	"cash"	and	
"viagra"

• Let	H1,	…,	Hk be	disjoint,	exhaustive	events	
representing	hypotheses	to	choose	between.
– Ex:	H1 =	this	email	is	spam,	H2 =	it's	not	spam.

• How	do	we	use	D	to	decide	which	H	is	most	
likely?



Maximum	likelihood

• Suppose	we	know	or	can	estimate	the	
probability	P(D	|	Hi)	for	each	Hi.

• The	maximum	likelihood	(ML)	hypothesis	is:

• How	to	use	it:	compute	P(D	|	Hi)	for	each	
hypothesis	and	select	the	one	with	the	
greatest	value.

HML = argmaxi P(D |Hi )



• Two	of	my	friends,	Alice	and	Bob,	bring	cookies	to	
the	office!

• Alice’s	has	baked	an	equal	number	of	both	
chocolate	chip	and	oatmeal	raisin	cookies.

• Bob’s	has	baked	chocolate	chip	and	oatmeal	raisin	
and	as	well,	but	twice	as	many	oatmeal	raisin	as	
chocolate	chip.

• I	ask	my	friend	to	get	me	a	cookie;	they	come	back	
with	a	chocolate	chip	one.

• Is	my	cookie	more	likely	to	
have	been	baked	by	Alice	or	
Bob?



• I	know	that	when	my	parents	send	me	a	
check,	there	is	an	98%	chance	that	they	will	
send	it	in	a	yellow	envelope.	

• I	also	know	that	when	my	dentist	sends	me	a	
bill,	there	is	a	5%	chance	that	she	will	send	it	
in	a	yellow	envelope.	

• Suppose	a	yellow	envelope	arrives	on	my	
doorstep.	

• What	is	the	maximum	likelihood	hypothesis	
regarding	the	sender?	



Why	ML	sometimes	is	bad

• Suppose	I	tell	you	that	there	is	a	3%	chance	
that	my	any	given	envelope	will	be	from	my	
parents	and	a	97%	chance	that	any	given	
envelope	will	be	from	my	dentist.	Does	it	still	
seem	likely	that	the	envelope	contains	a	check	
from	my	parents?	



Bayesian	reasoning

• Rather	than	compute	P(D	|	Hi),	let's	compute	
P(Hi |	D).

• What	is	the	posterior	probability	of	Hi given	
D?

P (Hi | D) =
P (D | Hi)P (Hi)

P (D)
= ↵P (D | Hi)P (Hi)



MAP	hypothesis

• Maximum	a	posteriori	(MAP)	hypothesis	is	the	
Hi that	maximizes	the	posterior	probability:

HML = argmaxi P(Hi |D)

HML = argmaxi
P(D |Hi )P(Hi )

P(D)
HML = argmaxi P(D |Hi )P(Hi )



ML	vs MAP

• The	MAP	hypothesis	takes	the	prior	
probability	of	each	hypothesis	into	account,	
ML	does	not.

HML = argmaxi P(D |Hi )

HMAP = argmaxi P(D |Hi )P(Hi )



• Two	of	my	friends,	Alice	and	Bob,	bring	cookies	to	
the	office!

• Alice’s	has	baked	an	equal	number	of	both	
chocolate	chip	and	oatmeal	raisin	cookies.

• Bob’s	has	baked	chocolate	chip	and	oatmeal	
raisin	and	as	well,	but	twice	as	many	oatmeal	
raisin	as	chocolate	chip.

• I	ask	my	friend	to	get	me	a	cookie.		Suppose	I	
know	that	my	friend	picks	Alice’s	cookies	90%	of	
the	time. My	friend	comes	back	with	a	chocolate	
chip	one.

• Is	my	cookie	more	likely	to	have	been	baked	by	
Alice	or	Bob?



• I	know	that	when	my	parents	send	me	a	check,	
there	is	an	98%	chance	that	they	will	send	it	in	a	
yellow	envelope.	

• I	know	that	when	my	dentist	sends	me	a	bill,	
there	is	a	5%	chance	that	she	will	send	it	in	a	
yellow	envelope.	

• Unfortunately,	I	also	know	that	there	is	a	only	a	
3%	chance	that	any	given	envelope	will	be	from	
my	parents,	while	there	is	a	is	a	97%	chance	that	
any	given	envelope	will	be	from	my	dentist.	

• Suppose	a	yellow	envelope	arrives	on	my	
doorstep.	What	is	the	MAP	hypothesis	regarding	
the	sender?	



• There	are	3	robots.	
• Robot	1	will	hand	you	a	snack	drawn	at	random	from	
2	doughnuts	and	7	carrots.	

• Robot	2	will	hand	you	a	snack	drawn	at	random	from	
4	apples	and	3	carrots.	

• Robot	3	will	hand	you	a	snack	drawn	at	random	from	
7	burgers	and	7	carrots.	

• Suppose	your	friend	goes	up	to	a	robot	(you	don’t	
see	this	happen)	and	is	given	a	carrot.		Is	it	more	
likely	that	your	friend	approached	robot	1	or	3?

• What	if	the	prior	probability	of	your	friend	
approaching	robots	1,	2,	and	3	are	20%,	40%,	and	
40%,	respectively?	



ML	vs MAP

• When	are	the	two	hypothesis	predictions	the	
same?

HML = argmaxi P(D |Hi )

HMAP = argmaxi P(D |Hi )P(Hi )



Probability	vs hypothesis
• Sometimes	you	only	care	about	which	
hypothesis	is	more	likely,	and	sometimes	you	
need	the	actual	probability.

=
P (D | Hi)P (Hi)P

j P (D,Hj)

=
P (D | Hi)P (Hi)P
j P (D | Hj)P (Hj)



Probability	vs hypothesis
• In	the	robot	problem,	what	is	P(R3	|	C)?

=	(7/9	*	2/10)	/	(7/9	*	2/10	+	3/7	*	4/10	+	1/2	*	4/10)	=~	0.2952


