
More	Statistical	Inference



Review

• Let	event	D	=	data	we	have	observed.
• Let	events	H1,	…,	Hk be	events	representing	
hypotheses	we	want	to	choose	between.

• Use	D	to	pick	the	"best"	H.

• There	are	two	"standard"	ways	to	do	this,	
depending	on	what	information	we	have	
available.



Maximum	likelihood	hypothesis

• The	maximum	likelihood	hypothesis	(HML)	is	
the	hypothesis	that	maximizes	the	probability	
of	the	data	given	that	hypothesis.

• How	to	use	it:	compute	P(D	|	Hi)	for	each	
hypothesis	and	select	the	one	with	the	
greatest	value.

HML
= argmax

i
P (D | Hi)



Maximum	a	posteriori	(MAP)	
hypothesis

• The	MAP	hypothesis	is	the	hypothesis	that	
maximizes	the	posterior	probability:

• The	P(D	|	Hi)	terms	are	now	weighted by	the	
hypothesis	prior	probabilities.

HMAP
= argmax

i
P (Hi | D)

= argmax

i

P (D | Hi)P (Hi)

P (D)

/ argmax

i
P (D | Hi)P (Hi)



Posterior	probability

• If	you	need	the	actual	posterior	probability:

P (Hi | D) =
P (D | Hi)P (Hi)

P (D)

=
P (D | Hi)P (Hi)P

j P (D,Hj)

=
P (D | Hi)P (Hi)P
j P (D | Hj)P (Hj)



One	slide	to	rule	them	all
• The	maximum	likelihood	hypothesis	is	the	
hypothesis	that	maximizes	the	probability	of	the	
observed	data:

• The	MAP	hypothesis	is	the	hypothesis	that	
maximizes	the	posterior	probability	given	D:

• P(Hi)	is	called	the	prior	probability	(or	just	prior).
• P(Hi|D)	is	called	the	posterior	probability.

HML
= argmax

i
P (D | Hi)

HMAP
= argmax

i
P (D | Hi)P (Hi)



• A	patient	comes	to	visit	Dr.	
Gregory	House	because	they	have	
a	cough.	After	insulting	and	
belittling	the	patient,	House	
consults	with	his	team	of	
diagnosticians,	who	tell	him	that	
if	a	patient	has	a	cold,	then	
there’s	a	75%	chance	they	will	
have	a	cough.	But	if	a	patient	has	
the	Ebola	virus,	there’s	a	80%	
chance	they	will	have	a	cough.	

• What	is	the	maximum	likelihood	
hypothesis	for	the	diagnosis?	



• After	concluding	the	patient	has	Ebola,	House	
fires	all	his	diagnosticians	for	their	poor	
hypothesis	testing	skills	and	hires	new	ones.	
This	new	team	does	some	background	
research	and	discovers	if	they	are	only	going	
to	consider	the	common	cold	and	Ebola,	then	
before	the	symptoms	are	even	considered,	
there’s	a	1%	chance	the	patient	has	Ebola	and	
a	99%	chance	they	have	a	cold.	

• What	is	the	MAP	hypothesis	for	the	diagnosis?	
What	is	the	posterior	probability	the	patient	
has	Ebola?	



• Suppose	I	work	in	FJ	in	a	windowless	office.		I	
want	to	know	whether	it's	raining	outside.		The	
chance	of	rain	is	70%.	My	colleague	walks	in	
wearing	his	raincoat.	If	it’s	raining,	there’s	a	65%	
chance	he’ll	be	wearing	a	raincoat.	Since	he’s	very	
unfashionable,	there’s	a	45%	chance	he’ll	be	
wearing	his	raincoat	even	if	it’s	not	raining.	My	
other	colleague	walks	in	with	wet	hair.	When	it’s	
raining	there’s	a	90%	chance	her	hair	will	be	wet.	
However,	since	she	sometimes	goes	to	the	gym	
before	work,	there’s	a	40%	chance	her	hair	will	be	
wet	even	if	it’s	not	raining.	

• What’s	the	posterior	probability	that	it’s	raining?	



• We	can't	solve	this	problem	because	we	don’t	
have	any	information	about	the	probability	of	
Colleague	1	wearing	a	raincoat	and	Colleague	
2	having	wet	hair	occurring	simultaneously.	

• We	don't	know	P(C,	W	|	R).
• Let's	make	an	assumption that	C	and	W	are	
conditionally	independent	given	that	it	is	
raining	(or	not	raining).

• P(C,	W	|	R)	=	P(C	|	R)	*	P(W	|	R)
– (and	similarly	for	given	~R)



Combining	evidence
• It	is	very	common	to	make	this	independence	 assumption	for	

multiple	pieces	of	evidence	(data).

where

P (Hi | D1, . . . , Dm) =
P (D1, . . . , Dm | Hi)P (Hi)

P (D1, . . . , Dm)

=

�
P (D1 | Hi) · · ·P (Dm | Hi)

�
P (Hi)

P (D1, . . . , Dm)

=

�Qm
j=1 P (Dj | Hi)

�
P (Hi)

P (D1, . . . , Dm)

P (D1 . . . , Dm) =
kX

i=1

⇣ mY

j=1

P (Dj | Hi)
⌘
P (Hi)



This	can	be	dangerous!







Spam	classification
• Suppose	you	have	an	email	and	you	want	to	
know	if	it's	spam	or	not.

• In	general,	the	probability	of	an	email	being	spam	
is	20%.

• Suppose	you	have	a	big	list	of	words	that	
"suggest"	spam,	like	viagra,	cialis,	cash,	...

• You	have	access	to	a	large	number	of	old	emails	
that	are	correctly	categorized	as	spam	or	not-
spam.

• How	can	you	compute	the	probability	that	a	new	
email	is	spam?



• Two	hypotheses:	spam	and	not-spam.
• You	know	P(spam)	and	P(not-spam).
• Suppose	your	word	list	has	m words	in	it.
• Our	newly-observed	email	(our	
evidence/data)	is	the	joint	event	W1,	W2,	…,	
Wm where	each	Wi is	true	or	false	if	the	word	
is	in	the	email	or	not.

• Let's	assume	the	words	are	all	conditionally	
independent	given	the	label	(spam/not-spam),	
and	that	we	can	compute	P(Wi|spam)	and	
P(Wi|not-spam).



P (spam | W1, . . . ,Wm) =
P (W1, . . . ,Wm | spam)P (spam)

P (W1, . . . ,Wm)

=

�
P (W1 | spam) · · ·P (Wm | spam)P (spam)

�

P (W1, . . . ,Wm)

=

�Qm
j=1 P (Wj | spam)

�
P (spam)

�

P (W1, . . . ,Wm)

The	equation	above	is	the	basis	for	a	probabilistic	
model	called	a	Naïve	Bayes	Classifier.


