Wrapup

Final Exam

- Monday, May 1, 5:30-8pm
- Either here (FJ-D) or FJ-B (to be determined)
- Cumulative, but emphasizes material postmidterm.
- Study old homework assignments, including programming projects.

Victory Lap

- A victory lap is an extra trip around the track
 - By the exhausted victors (us) ⁽³⁾

Review course goals – See if we met them

Artificial Intelligence

Goals

- Give you a toolbox of AI techniques.
- Show you when each technique is most appropriate.

Tools and techniques

- State space search
- Adversarial search
- Probability
- Bayes nets
- Naïve Bayes
- Hypothesis choosing (ML/MAP)
- Markov chains & hidden Markov models
- Reinforcement learning
- Neural nets

Environments

- Fully-observable vs partially-observable
- Single agent vs multiple agents
- Deterministic vs stochastic
- Episodic vs sequential
- Static or dynamic
- Discrete or continuous

Models, Inference, and Learning

- A *model* is an abstract way of representing a problem, including its environment, how the environment works, and the possible solutions to the problem.
 - Often includes data structures and/or mathematical relationships.
 - Examples: state spaces, game trees, Bayes nets (including Naïve Bayes classifiers, Markov chains, and HMMs), MDPs, neural networks.
- A model is how we represent the world and how it works.

Models, Inference, and Learning

- An *inference algorithm* draws conclusions or makes inferences based on the model.
 - Search (uniform cost search, greedy best first search, minimax, alpha-beta pruning), exact inference algorithm for Bayes nets, ML & MAP, inference algorithm in Markov chains, forward algorithm, backward algorithm, calculating output of neural network, value iteration.
- Inference algorithms answer questions about an existing model of the world

- (they don't change the model, they just use it)

Models, Inference, and Learning

- A *learning algorithm* tries to deduce the structure or parameters of the model itself from auxiliary data (often examples).
 - Training a Naïve Bayes classifier by estimating the prior and feature probabilities.
 - Training a neural network by using the backpropagation algorithm to learn the weights.
 - Q-learning.
- Learning algorithms produce or modify a model of the world.
- (Studied further in machine learning courses.)

State Space Search

- Represent a partial solution to the problem as a "state."
- Use an algorithms to find the "best" path through the state space.
- Pros: Often easy to formulate the model: states and actions.
- Cons: Often slow with a mediocre heuristic, state space is often too big to store explicitly in memory.
- Environment needed: Fully observable, single agent, deterministic, static.

Aside: What is a state?

- A (agent) state is an abstraction of the agent's *current* knowledge about the world.
 - In state space search, this is the set of variables describing what the agent knows at a certain time.
 - Suppose you were doing state space search by hand, and you had to stop in the middle. A friend is going to take over for you. What knowledge (separate from the environmental model) would you have to tell them to allow them to continue?

Aside: What is a state?

- You have a graph G = (V, E) and an integer n.
 Find a set of *n* vertices V' such that the set of vertices either in V' or adjacent to a vertex in V' is as large as possible.
- How do you represent a state?
- How do you represent the actions?

Adversarial Search

- Still uses a "state," only we aren't usually interested in the entire "best" path, just the "best" next move.
- Can use minimax and alpha-beta pruning to search the game tree.
- Pros: "The" model & algorithm(s) for 2-player games.
- Cons: Can't represent entire tree in memory, very slow for large games, still requires heuristics for deep trees.
- Environment needed: Fully observable, multiagent (2 opponents), deterministic, static.

Probability

- Way of representing uncertainty in a model or algorithm.
- Many modern AI techniques based on rules of probability.
 - Often can give better results than heuristic approaches, where any numbers used may not be derived from any mathematical rules.
- Algorithms for ML and MAP hypothesis choosing.

Bayesian Networks

- A representation of the conditional independences that hold among a set of random variables.
- Lets you compute the probability of any event, given any observation (setting) of a set of other variables.
- Pros: Simple representation, grounded in math
- Cons: Hard to learn, exact inference can be slow, scientist must develop set of appropriate variables.

Naïve Bayes

- Particular kind of Bayes net with nice properties.
- Assumes conditional independence among all pieces of evidence/features/data.
- Useful where you need to choose a hypothesis, but don't necessarily care about the actual posterior probability (often the conditional independence assumption messes that up).
- Pros: Very simple, parameters of model easy to learn, fast algorithms for inference and learning.
- Cons: Can make gross oversimplifications, probability estimates may not be very accurate (though hypothesis often is).
- Environment needed: Fully observable, (single agent), (deterministic?), static.

Markov chains and HMMs

- Another type of Bayes net!
- Makes Markov assumption: probability distribution of next state depends only upon current state. (Sometimes called Markov property)
- Used for sequential or temporal data.
- Pros: Only model so far that takes time into account, efficient algorithms for inference and learning.
- Cons: Again, might be overly simplistic for some applications.
- Environment needed: Fully/partially observable, single agent, stochastic, static.

Reinforcement learning

- Model: MDP
- Inference: Bellman equations, value iteration
- Learning: Q-learning, lots of others...
- Pros: Simple representation, good for cases where you'll be in the same state many times.
- Environment needed: Fully (partially) observable, single/multi agent, stochastic, static (dynamic).

All Markov Models

		Do we have control over the state transitions?	
		Νο	Yes
Are the states completely observable?	Yes	Markov chain	MDP (Markov decision process)
	No	HMM (Hidden Markov model)	POMDP (Partially- observable Markov decision process)

Neural networks

- Models: choice of activation function, # of hidden layers and # of nodes, what inputs look like.
- Inference: Calculating output of NN from given inputs.
- Learning: perceptron learning algorithm (single layer), backpropagation algorithm (multi-layer), all kinds of more modern algs (deep learning resurgence).
- Pros: Modern NNs are very accurate.
- Cons: can be hard or slow to train, need lots of training data.

Comparison of models

- Some model-algorithm combinations can solve "any" problem:
 - State-space search
 - (assuming fully-observable and deterministic environment)
- But often they either require
 - lots of engineering on the human's part
 - and/or are intractable on real-world problems

Comparison of models

 Other model-algorithm combinations solve problems very quickly:

– e.g., Naïve Bayes and HMMs

- But they only work for problems that fit the model well.
- Being good in AI involves picking the right combination of model and algorithm.

Future

- Other algorithms:
 - local search/optimization, constraint satisfaction problems, formal logic, planning, knowledge representation, so much more Bayes net/NN stuff, most of machine learning, ...
- Other application areas:
 - robotics, speech/natural language processing, computer vision, ...
- What's hot now: NNs and deep learning
- What will be hot in ten years: who knows?

What next?

- Take these ideas and use them in practice!
 - (But only where it makes sense.)
- Stay in touch
 - Tell me when this class helps you out with something cool (seriously).
 - Ask me cool AI questions (may not always know the answer, but I can tell you where to find it).
 - Don't be a stranger: let me know how the rest of your time at Rhodes (and beyond!) goes... I really do like to know.